We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.
Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.
Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
Differential cross section and polarization distributions are presented for elastic p p scattering at incident momenta of 1.73, 2.13, 2.37 and 2.97 GeV/ c . The data have been analysed in terms of a 5-parameter diffraction model. In terms of this model the difference in the shape of the differential cross sections for p p and pp elastic scattering is a result of the strong absorption in the p p system.
'1'. '2'. '3'. '4'.
'3'.
'2'.
Diffractive electroproduction of rho and phi mesons is measured at HERA with the H1 detector in the elastic and proton dissociative channels. The data correspond to an integrated luminosity of 51 pb^-1. About 10500 rho and 2000 phi events are analysed in the kinematic range of squared photon virtuality 2.5 < Q^2 < 60 GeV^2, photon-proton centre of mass energy 35 < W < 180 GeV and squared four-momentum transfer to the proton |t| < 3 GeV^2. The total, longitudinal and transverse cross sections are measured as a function of Q^2, W and |t|. The measurements show a transition to a dominantly "hard" behaviour, typical of high gluon densities and small q\bar{q} dipoles, for Q^2 larger than 10 to 20 GeV^2. They support flavour independence of the diffractive exchange, expressed in terms of the scaling variable (Q^2 + M_V^2)/4, and proton vertex factorisation. The spin density matrix elements are measured as a function of kinematic variables. The ratio of the longitudinal to transverse cross sections, the ratio of the helicity amplitudes and their relative phases are extracted. Several of these measurements have not been performed before and bring new information on the dynamics of diffraction in a QCD framework. The measurements are discussed in the context of models using generalised parton distributions or universal dipole cross sections.
Q**2 dependence of the GAMMA* P elastic RHO0 meson production at mean W There is an additional overall normalization uncertainty of 3.9 PCT.
Q**2 dependence of the GAMMA* P cross section for proton dissociative RHO0 meson production at mean W There is an additional overall normalization uncertainty of 4.6 PCT.
Q**2 dependence of the GAMMA* P elastic PHI meson production at mean W There is an additional overall normalization uncertainty of 4.7 PCT.
The proton-dissociative diffractive photoproduction of J/psi mesons has been studied in ep collisions with the ZEUS detector at HERA using an integrated luminosity of 112 pb^-1. The cross section is presented as a function of the photon-proton centre-of-mass energy and of the squared four-momentum transfer at the proton vertex. The results are compared to perturbative QCD calculations.
The differential cross section DSIG/DT as a function of T.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 2.0 to 2.5 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 2.5 to 3.0 GeV**2.
A measurement of elastic deeply virtual Compton scattering gamma* p -> gamma p using e^+ p and e^- p collision data recorded with the H1 detector at HERA is presented. The analysed data sample corresponds to an integrated luminosity of 306 pb^-1, almost equally shared between both beam charges. The cross section is measured as a function of the virtuality Q^2 of the exchanged photon and the centre-of-mass energy W of the gamma* p system in the kinematic domain 6.5 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2, where t denotes the squared momentum transfer at the proton vertex. The cross section is determined differentially in t for different Q^2 and W values and exponential t-slope parameters are derived. Using e^+ p and e^- p data samples, a beam charge asymmetry is extracted for the first time in the low Bjorken x kinematic domain. The observed asymmetry is attributed to the interference between Bethe-Heitler and deeply virtual Compton scattering processes. Experimental results are discussed in the context of two different models, one based on generalised parton distributions and one based on the dipole approach.
The DVCS cross section as a function of Q**2.
The DVCS cross section as a function of W.
The DVCS cross section as a function of W for three different Q**2 regions.
A study of the inclusive charged hadron production in two-photon collisions is described. The data were collected with the DELPHI detector at LEP II. Results on the inclusive single-particle p_T distribution and the differential charged hadrons dsigma/dp_T cross-section are presented and compared to the predictions of perturbative NLO QCD calculations and to published results.
Differential inclusive DSIG/DPT distribution of charged particles produced in GAMMA* GAMMA* interaction with two pseudorapidity cut offs.
Deeply virtual Compton scattering has been measured in e^+p collisions at HERA with the ZEUS detector using an integrated luminosity of 61.1 pb^-1. Cross sections are presented as a function of the photon virtuality, Q^2, and photon-proton centre-of-mass energy, W, for a wide region of the phase space, Q^2>~1.5 GeV^2 and 40<W<170 GeV. A subsample of events in which the scattered proton is measured in the leading proton spectrometer, corresponding to an integrated luminosity of 31.3 pb^-1, is used for the first direct measurement of the differential cross section as a function of t, where t is the square of the four-momentum transfer at the proton vertex.
The DVCS cross section as a function of Q**2.
The DVCS cross section as a function of W.
The DVCS cross section as a function of W in four Q**2 regions.
The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40<W<240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.
The differential cross section DSIG/DT for the LRG and the LPS data samples.
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
The first measurement of diffractive scattering of quasi-real photons with large momentum transfer gamma p -> gamma Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q^2 < 0.01 GeV^2. Cross sections are measured as a function of W, the incident photon-proton entre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4<|t|<36 GeV^2. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured |t| dependence is harder than that predicted by the model and those observed in exclusive vector meson production.
Cross section for the process E+ P --> E+ GAMMA DD as a function of W.
Cross section for the process GAMMA P --> GAMMA DD as a function of W.
Cross section for the process E+ P --> E+ GAMMA DD as a function of T.