The target asymmetry for the reaction γ p → K + Λ 0 was measured at the Bonn 2.5 GeV synchroton. Data were taken at a fixed kaon c.m. angle of 90° and at photon energies between 1.1 and 1.3 GeV. The kaons were detected in a large aperture magnetic spectrometer.
5 PCT TARGET POLARIZATION UNCERTAINTY INCLUDED IN QUOTED ERRORS.
We determine the ratio of the partial decay width for ψ(3684)→μ+μ− to that for the cascade decay ψ(3684)→ψ(3095)+X to be (1.4 ± 0.3)% and, by direct observation of associated charged particles and γ rays, find the ratio of the partial decay width for ψ(3684)→ψ(3095)+π0π0 to that for ψ(3684)→ψ(3095)+π+π− to be 0.64 ± 0.15.
Axis error includes +- 20/20 contribution (UNKNOWN SYSTEMATICAL ERRORDECAY-BR(BRN=J/PSI(3097) --> MU+ MU-, BR=?, C=FOLDED)).
Axis error includes +- 20/20 contribution (UNKNOWN SYSTEMATICAL ERRORDECAY-BR(BRN=J/PSI(3097) --> MU+ MU-, BR=?, C=FOLDED)).
Results on the hadronic final state in e/sup +/e/sup -/ annihilation at 13, 17 and 27.4 GeV are presented. There is no compelling evidence for the existence of the t quark in these data, which are in general agreement with a simple quark parton model. Some tentative indications of QCD effects are observed in the p/sub T//sup 2/ distributions.
Measurements ofR, sphericity and thrust are presented for c.m. energies between 12 and 31.6 GeV. A possible contribution of at\(\bar t\) continuum can be ruled out for c.m. energies between 16 and 31 GeV.
A high statistics experiment was performed on Bhabha scattering at energies between 14 and 34 GeV. Good agreement with QED was observed. The combined data on Bhabha scattering and μ pair production were found to agree with the standard theory of electroweak interaction giving sin 2 θ = 0.27 −0.07 +0.06 . Assuming for the Z 0 mass a value of 90 GeV the leptonic weak coupling constants were determined to g V 2 = −0.04 ± 0.06 and g A 2 = 0.35 ± 0.09. A search for scalar leptons sets lower limits on the mass of scalar electrons of M s e > 16.6 GeV and of scalar muons of M s μ > 16.4 GeV.
No description provided.
No description provided.
The inclusive production of π ± mesons in e + e − annihilation has been measured at c.m. energies of 14, 22 and 34 GeV for pion momenta between 0.3 ans 10 GeV/ c . The fraction of pions among the charged hadrons is above 90% at 0.4 GeV/ c and decreases to about 50% at high momenta. The scaled cross sections ( s β ) d σ d x at 14, 22 and 34 GeV as well as the 5.2 GeV data from DASP have a rather similar x dependence. After integration over the x range from 0.2 to 0.6 the cross sections indicate a monotonic decrease with increasing centre-of-mass energy.
Inclusive K 0 -production has been measured in e + e - annihilation at a center of mass energy of about W = 30 GeV. The ratio of K 0 + K 0 production to μ + μ - production is R K 0 = 5.6 ± 1.1 (statist. error) ± 0.8 (system.error) This value is about a factor of three higher than R K 0 at W = 7 GeV. The cross sections ( s / β ) d σ /d x is consistent with a scaling behaviour.
No description provided.
DIFFERENTIAL CROSS SECTION.
INVARIANT CROSS SECTION.
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Jet properties ine+e− annihilation at center of mass energies of 14, 22, 35 and 43.7 GeV were studied with the data collected in the TASSO detector at PETRA, using the same evaluation procedures for all the energies. The total hadronic cross section ratio for the center of mass energy interval 39–47 GeV was determined to be ℛ=4.11±0.05 (stat)±0.18(syst.) at\(\langle \sqrt s \rangle= 43 - 7\) GeV. Corrected distributions of global shape variables are presented as well as the inclusive charged particle distributions for scaled momentum and transverse momentum. The center of mass energy evolution of the average sphericity, thrust, aplanarity and particle momentum is shown.