Showing 10 of 14 results
The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two $W$ bosons, the lightest neutralinos ($\tilde\chi^0_1$), and quarks, are presented. The signal is characterised by the presence of a single charged lepton ($e^{\pm}$ or $\mu^{\pm}$) from a $W$ boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 TeV (1.4 TeV) are excluded at 95% confidence level for a light $\tilde\chi^0_1$.
Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model. space.
Observed 95% CL exclusion contours for the gluino one-step variable-x
Expected 95% CL exclusion contours for the gluino one-step variable-x
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Upper limits on the signal cross section for simplified model gluino one-step x = 1/2
Upper limits on the signal cross section for simplified model gluino one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x = 1/2
Upper limits on the signal cross section for simplified model squark one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x=1/2 in one-flavour schemes
Upper limits on the signal cross section for simplified model squark one-step variable-x in one-flavour schemes
Post-fit $m_{eff}$ distribution in the 2J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag validation region. Uncertainties include statistical and systematic uncertainties.
Post-fit $m_{eff}$ distribution in the 6J b-veto validation region. Uncertainties include statistical and systematic uncertainties.
Event selection cutflow for two representative signal samples for the SR2JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR2JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models
A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 900 GeV, $m(\tilde \chi_1^\pm)$ = 150 GeV and $m(\tilde \chi_1^0)$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 137 fb$^{-1}$. The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable $M_\mathrm{T2}$ for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving $R$-parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.
Definitions of super signal regions, along with predictions, observed data, and the observed 95% CL upper limits on the number of signal events contributing to each region ($N_{95}^\mathrm{max}$). The limits are given under assumptions of 0% and 15% for the uncertainty on the signal acceptance. All selection criteria as in the full analysis are applied. For regions with $N_\mathrm{j}=1$, $H_\mathrm{T}\equiv p_\mathrm{T}^\mathrm{jet}$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks ($\tilde{g}\to q\bar{q}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q\bar{q}\tilde{\chi}_1^0$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either a $\tilde{\chi}_2^0$ that decays to $Z\tilde{\chi}_1^0$ (1/3 of the time), or a $\tilde{\chi}_1^\pm$ that decays to $W^\pm\tilde{\chi}_1^0$ (2/3 of the time). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q_i\bar{q}_j V\tilde{\chi}_1^0$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and a $\tilde{\chi}_1^\pm$ that decays to $W^\pm\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q_i\bar{q}_j W\pm\tilde{\chi}_1^0$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to bottom quarks ($\tilde{g}\to b\bar{b}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to top quarks ($\tilde{g}\to t\bar{t}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for light-flavor squark pair production, where the squarks decay to $q\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay and 1-fold degeneracy in the light-flavor squarks (corresponding to the inner set of curves in the limit plot). To get the theory cross section for other N-fold degeneracy assumptions (e.g. 8-fold for the outer curves in the limit plot), just multiply by N.
Exclusion limits at 95% CL for bottom squark pair production, where the squarks decay to $b\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for top squark pair production, where the squarks decay to $t\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for top squark pair production, where the squarks decay to $b\tilde{\chi}_1^\pm$ and the $\tilde{\chi}_1^0$ decay to $W^\pm\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for top squark pair production, where the squarks decay either to $b\tilde{\chi}_1^\pm\to bW^\pm\tilde{\chi}_1^0$ or to $t\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for top squark pair production, where the squarks decay to $c\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for the mono-$\phi$ model, in which a resonantly-produced colored scalar decays to a massive Dirac fermion and a quark. Signal cross sections are calculated at leading order in $\alpha_S$, assuming unity branching fraction for the given decay.
Cross section limits for $\mathrm{LQ}\to\mathrm{q}\nu$, where $q=u,\,d,\,s,\,\mathrm{or}\,c$. Limits are at the 95% confidence level. Theory cross sections are LO for vector LQ, and NLO for scalar LQ. Branching ratio is assumed to be 100% to $\mathrm{q}\nu$.
Cross section limits for $\mathrm{LQ}\to\mathrm{b}\nu$. Limits are at the 95% confidence level. Theory cross sections are LO for vector LQ, and NLO for scalar LQ. Branching ratio is assumed to be 100% to $\mathrm{b}\nu$.
Cross section limits for $\mathrm{LQ}\to\mathrm{t}\nu$. Limits are at the 95% confidence level. Theory cross sections are LO for vector LQ, and NLO for scalar LQ. Branching ratios are assumed to be $\mathcal{B}(\mathrm{LQ}\to\mathrm{t}\nu)=1-\beta$, and $\mathcal{B}(\mathrm{LQ}\to\mathrm{b}\tau)=\beta$.
Predictions and observations for monojet signal regions
Predictions and observations for signal regions with $250 \leq H_\mathrm{T} < 450$ GeV
Predictions and observations for signal regions with $450 \leq H_\mathrm{T} < 575$ GeV and $N_\mathrm{j}<7$
Predictions and observations for signal regions with $450 \leq H_\mathrm{T} < 575$ GeV and $N_\mathrm{j}\geq7$
Predictions and observations for signal regions with $575 \leq H_\mathrm{T} < 1200$ GeV and $N_\mathrm{j}^\mathrm{hi}<4$
Predictions and observations for signal regions with $575 \leq H_\mathrm{T} < 1200$ GeV and $4\leq N_\mathrm{j}^\mathrm{hi}<7$
Predictions and observations for signal regions with $575 \leq H_\mathrm{T} < 1200$ GeV and $N_\mathrm{j}\geq7$
Predictions and observations for signal regions with $1200 \leq H_\mathrm{T} < 1500$ GeV and $N_\mathrm{j}^\mathrm{hi}<4$
Predictions and observations for signal regions with $1200 \leq H_\mathrm{T} < 1500$ GeV and $4\leq N_\mathrm{j}^\mathrm{hi}<7$
Predictions and observations for signal regions with $1200 \leq H_\mathrm{T} < 1500$ GeV and $N_\mathrm{j}\geq7$
Predictions and observations for signal regions with $H_\mathrm{T} \geq 1500$ GeV and $N_\mathrm{j}<7$
Predictions and observations for signal regions with $H_\mathrm{T} \geq 1500$ GeV and $N_\mathrm{j}\geq7$
Covariance matrix for the 282 signal regions of the inclusive $M_\mathrm{T2}$ search
Correlation matrix for the 282 signal regions of the inclusive $M_\mathrm{T2}$ search
Bin number definitions for the $M_\mathrm{T2}$ covariance and correlation matrices
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 10$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 50$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 200$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct light squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 10$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, for a single light squark.
Exclusion limits at 95% CL for direct light squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 50$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, for a single light squark.
Exclusion limits at 95% CL for direct light squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 200$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, for a single light squark.
Exclusion limits at 95% CL for direct stop pair production, where the stops decay to either a top and the lightest neutralino, or a bottom and the lightest chargino, and the chargino is long-lived with $c\tau_0 = 10$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct stop pair production, where the stops decay to either a top and the lightest neutralino, or a bottom and the lightest chargino, and the chargino is long-lived with $c\tau_0 = 50$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct stop pair production, where the stops decay to either a top and the lightest neutralino, or a bottom and the lightest chargino, and the chargino is long-lived with $c\tau_0 = 200$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
The maximum chargino mass excluded at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 1$ to 2000 cm while the gluino mass is fixed to 1900 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$. If all kinematically allowed chargino masses are excluded, the curves, including 68 and 95% expected, tend to overlap. At short decay lengths, horizontal exclusion lines are obtained from the inclusive analysis, as this is not affected by track reconstruction inefficiencies, which may arise when the chargino decays before the CMS tracker, and therefore shows better sensitivity to scenarios with very small lifetime compared to the disappearing track search, based on median expected limits.
The maximum chargino mass excluded at 95% CL for direct squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 1$ to 2000 cm while the squark mass is fixed to 900 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, for a single light squark. If all kinematically allowed chargino masses are excluded, the curves, including 68 and 95% expected, tend to overlap. At short decay lengths, horizontal exclusion lines are obtained from the inclusive analysis, as this is not affected by track reconstruction inefficiencies, which may arise when the chargino decays before the CMS tracker, and therefore shows better sensitivity to scenarios with very small lifetime compared to the disappearing track search, based on median expected limits.
The maximum chargino mass excluded at 95% CL for direct squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 1$ to 2000 cm while the squark mass is fixed to 1500 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, and the eight light squarks' masses are assumed to be degenerate. If all kinematically allowed chargino masses are excluded, the curves, including 68 and 95% expected, tend to overlap. At short decay lengths, horizontal exclusion lines are obtained from the inclusive analysis, as this is not affected by track reconstruction inefficiencies, which may arise when the chargino decays before the CMS tracker, and therefore shows better sensitivity to scenarios with very small lifetime compared to the disappearing track search, based on median expected limits.
Exclusion limits at 95% CL for direct stop pair production, where the stops decay to either a top and the lightest neutralino, or a bottom and the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 1$ to 2000 cm while the stop mass is fixed to 1000 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$. If all kinematically allowed chargino masses are excluded, the curves, including 68 and 95% expected, tend to overlap. At short decay lengths, horizontal exclusion lines are obtained from the inclusive analysis, as this is not affected by track reconstruction inefficiencies, which may arise when the chargino decays before the CMS tracker, and therefore shows better sensitivity to scenarios with very small lifetime compared to the disappearing track search, based on median expected limits.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 5$ to 1000 cm while the gluino mass is fixed to 1600 GeV and the neutralino's mass is fixed to 1575 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 5$ to 1000 cm while the squark mass is fixed to 2000 GeV and the neutralino's mass is fixed to 1000 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, and the eight light squarks' masses are assumed to be degenerate.
Exclusion limits at 95% CL for direct stop pair production, where the stops decay to either a top and the lightest neutralino, or a bottom and the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 5$ to 1000 cm while the stop mass is fixed to 1100 GeV and the neutralino's mass is fixed to 1000 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Predictions and observations for 2016 disappearing track signal regions
Predictions and observations for 2017-2018 pixel track signal regions
Predictions and observations for 2017-2018 medium (M) and long (L) length track signal regions
Covariance matrix for the 68 signal regions of the disappearing tracks $M_\mathrm{T2}$ search
Correlation matrix for the 68 signal regions of the disappearing tracks $M_\mathrm{T2}$ search
A search for long-lived particles decaying into an oppositely charged lepton pair, $\mu\mu$, $ee$, or $e\mu$, is presented using 32.8 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=13$ TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary $pp$ interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The detection efficiencies for generic resonances with lifetimes ($c\tau$) of 100-1000 mm decaying into a dilepton pair with masses between 0.1-1.0 TeV are presented as a function of $p_T$ and decay radius of the resonances to allow the extraction of upper limits on the cross sections for theoretical models. The result is also interpreted in a supersymmetric model in which the lightest neutralino, produced via squark-antisquark production, decays into $\ell^{+}\ell^{'-}\nu$ ($\ell, \ell^{'} = e$, $\mu$) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50-500 GeV and mean proper lifetimes corresponding to $c\tau$ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, $c\tau$ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos.
<h1>Overview of reinterpretation material</h1><p><b>Important note:</b> A detailed explanation of the reinterpretation material can be found <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2017-04/hepdata_info.pdf">here</a>.<br/>Please read this stand-alone document before reinterpreting the search.</p><h2>Parameterized detection efficiencies</h2><p>RPV SUSY model: Tables <a href="90606?version=1&table=Table27">27</a> to <a href="90606?version=1&table=Table44">44</a><br/>Z' toy model: Tables <a href="90606?version=1&table=Table45">45</a> to <a href="90606?version=1&table=Table59">59</a></p><h2>Further material for the RPV SUSY model</h2><p>Acceptances: Tables <a href="90606?version=1&table=Table18">18</a> (ee), <a href="90606?version=1&table=Table19">19</a> (emu) and <a href="90606?version=1&table=Table20">20</a> (mumu)<br/>Detection efficiencies: Tables <a href="90606?version=1&table=Table21">21</a> (ee), <a href="90606?version=1&table=Table22">22</a> (emu) and <a href="90606?version=1&table=Table23">23</a> (mumu)<br/>Overall signal efficiencies: Tables <a href="90606?version=1&table=Table24">24</a> (ee), <a href="90606?version=1&table=Table25">25</a> (emu) and <a href="90606?version=1&table=Table26">26</a> (mumu)</p><h2>Further material for the Z' toy model</h2><p>Acceptances, detection efficiencies and overall signal efficiencies: Tables <a href="90606?version=1&table=Table60">60</a> (mZ' = 100 GeV) to <a href="90606?version=1&table=Table64">64</a> (mZ' = 1000 GeV)</p>
dRcos distribution of dimuon pairs (scaled) and dimuon vertices in the cosmic rays control region. The distribution of all dimuon pairs is scaled to the DV distribution.
Dependence of the overall signal efficiency on the transverse decay radius Rxy of the long-lived Z' for Z' -> ee. The error bars indicate the total uncertainties.
Dependence of the overall signal efficiency on the pT of the long-lived Z' for Z' -> ee. The error bars indicate the total uncertainties.
Dependence of the overall signal efficiency on the transverse decay radius Rxy of the long-lived Z' for Z' -> emu. The error bars indicate the total uncertainties.
Dependence of the overall signal efficiency on the pT of the long-lived Z' for Z' -> emu. The error bars indicate the total uncertainties.
Dependence of the overall signal efficiency on the transverse decay radius Rxy of the long-lived Z' for Z' -> mumu. The error bars indicate the total uncertainties.
Dependence of the overall signal efficiency on the pT of the long-lived Z' for Z' -> mumu. The error bars indicate the total uncertainties.
Overall signal efficiency as a function of the mean proper lifetime (ctau) of the neutralino for the lambda121 scenario of the RPV SUSY model. The error bars indicate the total uncertainties.
Overall signal efficiency as a function of the mean proper lifetime (ctau) of the neutralino for the lambda122 scenario of the RPV SUSY model. The error bars indicate the total uncertainties.
95% CL upper limits on the squark-antisquark production cross-section as a function of the mean proper lifetime (ctau) of the neutralino for the lambda121 scenario of the RPV SUSY model and a 700 GeV squark. The uncertainties of the expected limit indicate the +-1sigma variations.
95% CL upper limits on the squark-antisquark production cross-section as a function of the mean proper lifetime (ctau) of the neutralino for the lambda122 scenario of the RPV SUSY model and a 700 GeV squark. The uncertainties of the expected limit indicate the +-1sigma variations.
95% CL upper limits on the squark-antisquark production cross-section as a function of the mean proper lifetime (ctau) of the neutralino for the lambda121 scenario of the RPV SUSY model and a 1600 GeV squark. The uncertainties of the expected limit indicate the +-1sigma variations.
95% CL upper limits on the squark-antisquark production cross-section as a function of the mean proper lifetime (ctau) of the neutralino for the lambda122 scenario of the RPV SUSY model and a 1600 GeV squark. The uncertainties of the expected limit indicate the +-1sigma variations.
Fraction of detector volume covered by the material veto as a function of z and Rxy of the displaced dilepton vertex.
Fraction of detector volume covered by the disabled pixel modules veto veto as a function of z and Rxy of the displaced dilepton vertex.
Observed Rxy distribution of vertices composed of two non-leptonic tracks in a control sample in the data and the predicted distribution obtained from the event mixing. The error bars indicate the statistical uncertainties.
Rxy distributions of Kshort vertices from the large radius tracking in the data and background MC samples. Data has been normalised such that the total number of Kshort from the standard tracking in the data agrees with the total number of Kshort from the standard tracking in the MC. The error bars indicate the statistical uncertainties.
Acceptance per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> eenu. The error bars indicate the statistical uncertainties.
Acceptance per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> emunu. The error bars indicate the statistical uncertainties.
Acceptance per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> mumunu. The error bars indicate the statistical uncertainties.
Detection efficiency per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> eenu. The error bars indicate the total uncertainties.
Detection efficiency per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> emunu. The error bars indicate the total uncertainties.
Detection efficiency per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> mumunu. The error bars indicate the total uncertainties.
Overall signal efficiency (acceptance times efficiency) per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> eenu. The error bars indicate the total uncertainties.
Overall signal efficiency (acceptance times efficiency) per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> emunu. The error bars indicate the total uncertainties.
Overall signal efficiency (acceptance times efficiency) per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> mumunu. The error bars indicate the total uncertainties.
Detection efficiency per decay for Rxy < 22 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for 22 <= Rxy < 38 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for 38 <= Rxy < 73 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for 73 <= Rxy < 111 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for 111 <= Rxy < 145 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for 145 <= Rxy < 300 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.
Detection efficiency per decay for Rxy < 22 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for 22 <= Rxy < 38 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for 38 <= Rxy < 73 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for 73 <= Rxy < 111 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for 111 <= Rxy < 145 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for 145 <= Rxy < 300 mm as a function of the invariant mass and pT of the electron and muon pair in LLP -> emuX.
Detection efficiency per decay for Rxy < 22 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay for 22 <= Rxy < 38 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay for 38 <= Rxy < 73 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay for 73 <= Rxy < 111 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay for 111 <= Rxy < 145 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay for 145 <= Rxy < 300 mm as a function of the invariant mass and pT of the muon pair in LLP -> mumuX.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 100 GeV and LLP -> ee.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 100 GeV and LLP -> emu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 100 GeV and LLP -> mumu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 250 GeV and LLP -> ee.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 250 GeV and LLP -> emu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 250 GeV and LLP -> mumu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 500 GeV and LLP -> ee.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 500 GeV and LLP -> emu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 500 GeV and LLP -> mumu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 750 GeV and LLP -> ee.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 750 GeV and LLP -> emu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 750 GeV and LLP -> mumu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 1000 GeV and LLP -> ee.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 1000 GeV and LLP -> emu.
Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 1000 GeV and LLP -> mumu.
Acceptance, detection efficiency, and overall signal efficiency in the Z' toy model for mZ' = 100 GeV, three mean proper lifetimes (ctau) and the three decay modes of the Z'.
Acceptance, detection efficiency, and overall signal efficiency in the Z' toy model for mZ' = 250 GeV, three mean proper lifetimes (ctau) and the three decay modes of the Z'.
Acceptance, detection efficiency, and overall signal efficiency in the Z' toy model for mZ' = 500 GeV, three mean proper lifetimes (ctau) and the three decay modes of the Z'.
Acceptance, detection efficiency, and overall signal efficiency in the Z' toy model for mZ' = 750 GeV, three mean proper lifetimes (ctau) and the three decay modes of the Z'.
Acceptance, detection efficiency, and overall signal efficiency in the Z' toy model for mZ' = 1000 GeV, three mean proper lifetimes (ctau) and the three decay modes of the Z'.
A search for new phenomena in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton--proton collision data with an integrated luminosity of $36.1 \; \mathrm{fb}^{-1}$, collected during 2015 and 2016 at a centre-of-mass energy $\sqrt{s}$ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair and the lightest neutralino ($\tilde{\chi}_1^0$) via one of two next-to-lightest neutralino ($\tilde{\chi}_2^0$) decay mechanisms: $\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$, where the $Z$ boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the $Z$ boson mass; and $\tilde{\chi}_2^0 \rightarrow \ell^+\ell^- \tilde{\chi}_1^0$ with no intermediate $\ell^+\ell^-$ resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 TeV and 1.3 TeV at 95% confidence level, respectively.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-low. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1200 GeV and m(neutralino1) = 900 GeV is overlaid.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-med. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1600 GeV and m(neutralino1) = 900 GeV, and from an on-$Z$ model with m(gluino) = 1640 GeV and m(neutralino1) = 1160 GeV, is overlaid.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SR-high. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the slepton model with m(gluino) = 1800 GeV and m(neutralino1) = 500 GeV, and from an on-$Z$ model with m(gluino) = 1650 GeV and m(neutralino1) = 550 GeV, is overlaid.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SRC of the low-pT edge search. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the $Z^{*}$ model with m(gluino) = 1000 GeV and m(neutralino1) = 900 GeV is overlaid.
Observed and expected dilepton mass distributions, with the bin boundaries considered for the interpretation, in SRC-MET of the low-pT edge search. All statistical and systematic uncertainties of the expected background are included in the hatched band. An example signal from the $Z^{*}$ model with m(gluino) = 1000 GeV and m(neutralino1) = 900 GeV is overlaid.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Observed 95% CL exclusion contours from the low-p$_{T}$ signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Expected 95% CL exclusion contours from the low-p$_{T}$ signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson and the lightest neutralino.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson and the lightest neutralino.
Observed 95% CL exclusion contours from the low-p$_{T}$ signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson and the lightest neutralino.
Expected 95% CL exclusion contours from the low-p$_{T}$ signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson and the lightest neutralino.
Observed 95% CL exclusion contours from the on-Z signal regions on the gluino and next-to-lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Expected 95% CL exclusion contours from the on-Z signal regions on the gluino and next-to-lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Observed 95% CL exclusion contours from the on-Z signal regions on the squark and next-to-lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Expected 95% CL exclusion contours from the on-Z signal regions on the squark and next-to-lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Observed 95% CL exclusion contours from the on-Z signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson the lightest neutralino.
Expected 95% CL exclusion contours from the on-Z signal regions on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and the lightest neutralino.
Acceptance and efficiency in the on-Z bin for SR-medium for the SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Acceptance and efficiency in the on-Z bin for SR-high for the SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
Acceptance and efficiency over the full $m_{ll}$ range for SR-low for a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Acceptance and efficiency over the full $m_{ll}$ range for SR-medium for a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Acceptance and efficiency over the full $m_{ll}$ range for SR-high for a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Acceptance and efficiency over the full $m_{ll}$ range for SRC for a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
Acceptance and efficiency over the full $m_{ll}$ range for SRC-MET for a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the on-Z $m_{ll}$ windows of SR-medium and SR-high, SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the on-Z $m_{ll}$ windows of SR-medium and SR-high, SUSY scenario where squarks are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the on-Z $m_{ll}$ windows of SR-medium and SR-high, in a SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson the lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the signal regions, in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the low-p$_{T}$ signal regions, in a SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the signal regions, in a SUSYscenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson.
The grey numbers show the 95% CL upper limits on the production cross section at each model point, derived from the best expected combination of results in the low-p$_{T}$ signal regions, in a SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson.
Cutflow table for three benchmark signal points from the SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino, with m(gluino) = 1395 GeV and m(neutralino2) = 505 GeV, m(gluino) = 920 GeV and m(neutralino2) = 230 GeV and m(gluino) = 940 GeV and m(neutralino2) = 660 GeV, in the on-$Z$ $m_{ll}$ bins of SR-medium and SR-high for the electron and muon channels separately. The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow table for a signal point from the SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino, with m(gluino) = 1000 GeV and m(neutralino1) = 800 GeV, m(gluino) = 1200 GeV and m(neutralino1) = 500 GeV and m(gluino) = 1400 GeV and m(neutralino1) = 100 GeV, in all m_{ll}$ bins of SR-low, SR-medium and SR-high for the electron and muon channels separately. The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cutflow table for a signal point from the SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson, with m(gluino) = 600 GeV and m(neutralino1) = 560 GeV and m(gluino) = 1000 GeV and m(neutralino1) = 960 GeV, in all $m_{ll}$ bins of SRC and SRC-MET for the electron and muon channels separately. The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region used to derive the exclusion limit for the SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino, corresponding to the SR determined to give the best expected limit for a given signal point.
Signal region used to derive the exclusion limit for the SUSY scenario where squarks are produced in pairs and decay to an on-shell Z-boson and a 1 GeV lightest neutralino, corresponding to the SR determined to give the best expected limit for a given signal point.
Signal region used to derive the exclusion limit for the SUSY scenario where gluinos are produced in pairs and decay to an on-shell Z-boson the lightest neutralino, corresponding to the SR determined to give the best expected limit for a given signal point.
Signal region used to derive the exclusion limit for the SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson, corresponding to the SR determined to give the best expected limit for a given signal point.
Low-$p_{T}$ signal region used to derive the exclusion limit in the compressed region for the SUSY scenario where gluinos are produced in pairs and decay to an on- or off-shell $Z$ boson, corresponding to the SR determined to give the best expected limit for a given signal point.
Signal region used to derive the exclusion limit for the SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino, corresponding to the SR determined to give the best expected limit for a given signal point.
Low-$p_{T}$ signal region used to derive the exclusion limit for the SUSY scenario where gluinos are produced in pairs and decay via sleptons into the lightest neutralino, corresponding to the SR determined to give the best expected limit for a given signal point.
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2200. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 800 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-2400. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1200. For signal, a squark direct decay model where squarks have mass of 900 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2000. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2400. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-3600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-1600. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR3j-1300. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1400. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1800. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2600. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-3000. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1700. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2000. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1800. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Cut-flow of Meff-2j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-3j,4j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-5j,6j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting squarks for SS direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting gluinos for GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting compressed mass-spectra signals for SS direct and GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton--proton collision data corresponding to an integrated luminosity of 36.1 fb${}^{-1}$ at a centre-of-mass energy of 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons ($e$ or $\mu$). Several signal regions are considered with increasing requirements on the missing transverse momentum above 250 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.
The measured leading jet $p_{T}$ distribution in the W($\rightarrow \mu \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
The measured $E_{T}^{miss}$ distribution in the W($\rightarrow e \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
The measured leading jet $p_{T}$ distribution in the W($\rightarrow e \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
The measured $E_{T}^{miss}$ distribution in the Z/$\gamma ^{*}$($\rightarrow \mu \mu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
The measured leading jet $p_{T}$ distribution in the Z/$\gamma ^{*}$($\rightarrow \mu \mu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
The measured $E_{T}^{miss}$ distribution in the top control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
The measured leading jet $p_{T}$ distribution in the top control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
Measured distribution of the $E_{T}^{miss}$ for the $E_{T}^{miss}$ > 250GeV selection compared to the SM predictions. The latter are normalized with normalization factors as determined by the global fit that considers exclusive $E_{T}^{miss}$ regions. The last bin of the distribution contains overflows.
Measured distribution of the leading jet $p_{T}$ for the $E_{T}^{miss}$ > 250GeV selection compared to the SM predictions. The latter are normalized with normalization factors as determined by the global fit that considers exclusive $E_{T}^{miss}$ regions. The last bin of the distribution contains overflows.
Measured distribution of the leading jet $|\eta|$ for the $E_{T}^{miss}$ > 250GeV selection compared to the SM predictions. The latter are normalized with normalization factors as determined by the global fit that considers exclusive $E_{T}^{miss}$ regions. The last bin of the distribution contains overflows.
Measured distribution of the jet multiplicity for the $E_{T}^{miss}$ > 250GeV selection compared to the SM predictions. The latter are normalized with normalization factors as determined by the global fit that considers exclusive $E_{T}^{miss}$ regions. The last bin of the distribution contains overflows.
The expected $95\%$ CL exclusion limit for a simplified model of dark matter production involving an axial-vector operator, Dirac DM and couplings $g_{q} = 0.25$ and $g_{\chi} = 1$ as a function of the assumed mediator mass m$_{Z_{A}}$ and the dark matter mass m$_{\chi}$.
The measured $E_{T}^{miss}$ distribution in the W($\rightarrow \mu \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.
The observed $95\%$ CL exclusion limit for a simplified model of dark matter production involving an axial-vector operator, Dirac DM and couplings $g_{q} = 0.25$ and $g_{\chi} = 1$ as a function of the assumed mediator mass m$_{Z_{A}}$ and the dark matter mass m$_{\chi}$.
The observed $90\%$ CL exclusion limit on the spin-dependent WIMP–proton scattering cross section in the context of the simplified model with axial-vector couplings, assuming minimal mediator width and the coupling values $g_{q} = 0.25$ and $g_{\chi} = 1$.
The expected $95\%$ CL exclusion limit for a simplified model of dark matter production involving a vector operator, Dirac DM and couplings $g_{q} = 0.25$ and $g_{\chi} = 1$ as a function of the assumed mediator mass m$_{Z_{V}}$ and the dark matter mass m$_{\chi}$.
The observed $95\%$ CL exclusion limit for a simplified model of dark matter production involving a vector operator, Dirac DM and couplings $g_{q} = 0.25$ and $g_{\chi} = 1$ as a function of the assumed mediator mass m$_{Z_{V}}$ and the dark matter mass m$_{\chi}$.
The expected and observed $95\%$ CL limits on the signal strength $\mu = \sigma^{95\% CL}/\sigma$ as a function of the mediator mass for a very light WIMP, in a model with spin-0 pseudoscalar mediator and $g_{q}=g_{\chi}=1.0$.
The expected and observed $95\%$ CL limits on the signal strength $\mu = \sigma^{95\% CL}/\sigma$ as a function of the WIMP mass for $m_{Z_{P}}=10$ GeV, in a model with spin-0 pseudoscalar mediator and $g_{q}=g_{\chi}=1.0$.
The expected exclusion contour at $95\%$ CL in the m$_{\eta}$–m$_{\chi}$ parameter plane for the coloured scalar mediator model, with minimal width and coupling set to $g=1$.
The observed exclusion contour at $95\%$ CL in the m$_{\eta}$–m$_{\chi}$ parameter plane for the coloured scalar mediator model, with minimal width and coupling set to $g=1$.
The expected excluded region at the $95\%$ CL in the ($\tilde{t}_{1}$,$\chi^{0}_{1}$) mass plane for the decay channel $\tilde{t}_{1} \rightarrow c + \chi^{0}_{1}$ (B = $100\%$).
The observed excluded region at the $95\%$ CL in the ($\tilde{t}_{1}$,$\chi^{0}_{1}$) mass plane for the decay channel $\tilde{t}_{1} \rightarrow c + \chi^{0}_{1}$ (B = $100\%$).
The expected excluded region at the $95\%$ CL in the ($\tilde{t}_{1}$,$\chi^{0}_{1}$) mass plane for the decay channel $\tilde{t}_{1} \rightarrow b + ff' + \chi^{0}_{1}$ (B = $100\%$).
The observed excluded region at the $95\%$ CL in the ($\tilde{t}_{1}$,$\chi^{0}_{1}$) mass plane for the decay channel $\tilde{t}_{1} \rightarrow b + ff' + \chi^{0}_{1}$ (B = $100\%$).
The expected exclusion plane at $95\%$ CL as a function of sbottom and neutralino masses for the decay channel $\tilde{b}_{1} \rightarrow b + \chi^{0}_{1}$ (B = $100\%$).
The observed exclusion plane at $95\%$ CL as a function of sbottom and neutralino masses for the decay channel $\tilde{b}_{1} \rightarrow b + \chi^{0}_{1}$ (B = $100\%$).
The expected exclusion region at $95\%$ CL as a function of squark mass and the squark-neutralino mass difference for $\tilde{q}_{1} → q + \chi^{0}_{1}$ (q =u,d,c,s).
The observed exclusion region at $95\%$ CL as a function of squark mass and the squark-neutralino mass difference for $\tilde{q}_{1} → q + \chi^{0}_{1}$ (q =u,d,c,s).
Expected and observed $95\%$ CL lower limits on the fundamental Planck scale in 4+n dimensions, M$_D$, as a function of the number of extra dimensions.
Expected and observed $95\%$ CL upper limit on the signal strength $\mu$ in the hypothesis of an axial-vector mediator, g$_{q}=0.25$, g$_{\chi}=1.0$ and minimal mediator width, as a function of the assumed mediator and DM masses.
Observed $90\%$ CL exclusion limit on the spin-dependent WIMP–neutron scattering cross section in the context of the simplified model with axial-vector couplings, assuming minimal mediator width and the coupling values $g_{q}=0.25$ and $g_{\chi}=1$.
Expected and observed $95\%$ CL upper limit on the signal strength $\mu$ in the hypothesis of a pseudoscalar mediator, $g_{q}=g_{\chi}=1.0$ and minimal mediator width, as a function of the assumed mediator and DM masses.
The results of a search for squarks and gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton--proton collision data at a center-of-mass energy of $\sqrt{s}$ = 13 TeV are presented. The dataset used was recorded during 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 36.1 $fb^{-1}$. No significant excess beyond the expected background is found. Exclusion limits at 95% confidence level are set in a number of supersymmetric scenarios, reaching masses up to 2.1 TeV for gluino pair production and up to 1.25 TeV for squark pair production.
Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Observed 95% CL exclusion contours for the gluino one-step variable-x model.
Expected 95% CL exclusion contours for the gluino one-step variable-x model.
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for the squark one-step variable-x model.
Expected 95% CL exclusion contours for the squark one-step variable-x model.
Observed 95% CL exclusion contours for the gluino two-step model.
Expected 95% CL exclusion contours for the gluino two-step model.
Observed 95% CL exclusion contours for pMSSM model.
Expected 95% CL exclusion contours for pMSSM model.
$m_{\mathrm{eff}}$ distribution in 2J b-veto signal regions after fit. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{eff}}$ distribution in 4J low-x b-veto signal regions after fit. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{eff}}$ distribution in 4J high-x b-veto signal regions after fit. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{eff}}$ distribution in 6J b-veto signal regions after fit. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{eff}}$ distribution in 2J b-tag signal regions after fit. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{eff}}$ distribution in 4J low-x b-tag signal regions after fit. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{eff}}$ distribution in 4J high-x b-tag signal regions after fit. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{eff}}$ distribution in 6J b-tag signal regions after fit. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{eff}}$ distribution in 9J signal regions after fit. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{T}}$ distribution for events satisfying all the 2J b-veto signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$E_{\mathrm T}^{\mathrm{miss}}$ distribution for events satisfying all the 2J b-veto signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{T}}$ distribution for events satisfying all the 2J b-tag signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$E_{\mathrm T}^{\mathrm{miss}}$ distribution for events satisfying all the 2J b-tag signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{T}}$ distribution for events satisfying all the 4J low-x b-veto signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$E_{\mathrm T}^{\mathrm{miss}}$ distribution for events satisfying all the 4J low-x b-veto signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{T}}$ distribution for events satisfying all the 4J low-x b-tag signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$E_{\mathrm T}^{\mathrm{miss}}$ distribution for events satisfying all the 4J low-x b-tag signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{T}}$ distribution for events satisfying all the 4J high-x b-veto signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$E_{\mathrm T}^{\mathrm{miss}}$ distribution for events satisfying all the 4J high-x b-veto signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{T}}$ distribution for events satisfying all the 4J high-x b-tag signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$E_{\mathrm T}^{\mathrm{miss}}$ distribution for events satisfying all the 4J high-x b-tag signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{T}}$ distribution for events satisfying all the 6J b-veto signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$E_{\mathrm T}^{\mathrm{miss}}$ distribution for events satisfying all the 6J b-veto signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{T}}$ distribution for events satisfying all the 6J b-tag signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$E_{\mathrm T}^{\mathrm{miss}}$ distribution for events satisfying all the 6J b-tag signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
$m_{\mathrm{T}}$ distribution for events satisfying all the 9J signal region selections but for the one on the variable shown in the figure. The uncertainty bands plotted include all statistical and systematic uncertainties. The dashed lines stand for the benchmark signal samples.
Observed upper limits on the signal cross-section for gluino one-step x = 1/2 model.
Observed upper limits on the signal cross-section for gluino one-step variable-x model.
Observed upper limits on the signal cross-section for squark one-step x = 1/2 model.
Observed upper limits on the signal cross-section for squark one-step variable-x model.
Observed upper limits on the signal cross-section for gluino two-step model.
Observed upper limits on the signal cross-section for pMSSM model.
Acceptance in 2J discovery signal region for gluino one-step x = 1/2 model.
Acceptance in 2J discovery signal region for squark one-step x = 1/2 model.
Acceptance in 4J low-x discovery signal region for gluino one-step variable-x model.
Acceptance in 4J low-x discovery signal region for squark one-step variable-x model.
Acceptance in 4J high-x discovery signal region for gluino one-step variable-x model.
Acceptance in 4J high-x discovery signal region for squark one-step variable-x model.
Acceptance in 6J discovery signal region for gluino one-step x = 1/2 model.
Acceptance in 6J discovery signal region for squark one-step x = 1/2 model.
Acceptance in 9J discovery signal region for pMSSM model.
Acceptance in 9J discovery signal region for gluino two-step model.
Efficiency in 2J discovery signal region for gluino one-step x = 1/2 model.
Efficiency in 2J discovery signal region for squark one-step x = 1/2 model.
Efficiency in 4J low-x discovery signal region for gluino one-step variable-x model.
Efficiency in 4J low-x discovery signal region for squark one-step variable-x model.
Efficiency in 4J high-x discovery signal region for gluino one-step variable-x model.
Efficiency in 4J high-x discovery signal region for squark one-step variable-x model.
Efficiency in 6J discovery signal region for gluino one-step x = 1/2 model.
Efficiency in 6J discovery signal region for squark one-step x = 1/2 model.
Efficiency in 9J discovery signal region for pMSSM model.
Efficiency in 9J discovery signal region for gluino two-step model.
Cutflow table for the 2J discovery signal region with a representative target signal model. The weighted numbers are normalized to 36.1 fb$^{-1}$ and rounded to the statistical error. The selection called "Filter" is introduced for initial data reduction. It selects events with at least one soft electron or muon ($3.5 < p_\mathrm{T} < 25$ GeV for muons and $4.5 < p_\mathrm{T} < 25$ GeV for electrons) in which an $E_\mathrm{T}^\mathrm{miss}$ trigger has fired or events with at least one hard electron or muon ($p_\mathrm{T} >$25 GeV).
Cutflow table for the 4J high-x discovery signal region with a representative target signal model. The weighted numbers are normalized to 36.1 fb$^{-1}$ and rounded to the statistical error. The selection called "Filter" is introduced for initial data reduction. It selects events with at least one soft electron or muon ($3.5 < p_\mathrm{T} < 25$ GeV for muons and $4.5 < p_\mathrm{T} < 25$ GeV for electrons) in which an $E_\mathrm{T}^\mathrm{miss}$ trigger has fired or events with at least one hard electron or muon ($p_\mathrm{T} >$25 GeV).
Cutflow table for the 4J low-x discovery signal region (targetting gluino decays) with a representative target signal model. The weighted numbers are normalized to 36.1 fb$^{-1}$ and rounded to the statistical error. The selection called "Filter" is introduced for initial data reduction. It selects events with at least one soft electron or muon ($3.5 < p_\mathrm{T} < 25$ GeV for muons and $4.5 < p_\mathrm{T} < 25$ GeV for electrons) in which an $E_\mathrm{T}^\mathrm{miss}$ trigger has fired or events with at least one hard electron or muon ($p_\mathrm{T} >$25 GeV).
Cutflow table for the 4J low-x discovery signal region (targetting squark decays) with a representative target signal model. The weighted numbers are normalized to 36.1 fb$^{-1}$ and rounded to the statistical error. The selection called "Filter" is introduced for initial data reduction. It selects events with at least one soft electron or muon ($3.5 < p_\mathrm{T} < 25$ GeV for muons and $4.5 < p_\mathrm{T} < 25$ GeV for electrons) in which an $E_\mathrm{T}^\mathrm{miss}$ trigger has fired or events with at least one hard electron or muon ($p_\mathrm{T} >$25 GeV).
Cutflow table for the 6J discovery signal region (targetting gluino decays) with a representative target signal model. The weighted numbers are normalized to 36.1 fb$^{-1}$ and rounded to the statistical error. The selection called "Filter" is introduced for initial data reduction. It selects events with at least one soft electron or muon ($3.5 < p_\mathrm{T} < 25$ GeV for muons and $4.5 < p_\mathrm{T} < 25$ GeV for electrons) in which an $E_\mathrm{T}^\mathrm{miss}$ trigger has fired or events with at least one hard electron or muon ($p_\mathrm{T} >$25 GeV).
Cutflow table for the 6J discovery signal region (targetting squark decays) with a representative target signal model. The weighted numbers are normalized to 36.1 fb$^{-1}$ and rounded to the statistical error. The selection called "Filter" is introduced for initial data reduction. It selects events with at least one soft electron or muon ($3.5 < p_\mathrm{T} < 25$ GeV for muons and $4.5 < p_\mathrm{T} < 25$ GeV for electrons) in which an $E_\mathrm{T}^\mathrm{miss}$ trigger has fired or events with at least one hard electron or muon ($p_\mathrm{T} >$25 GeV).
Cutflow table for the 9J discovery signal region with a representative target signal model. The weighted numbers are normalized to 36.1 fb$^{-1}$ and rounded to the statistical error. The selection called "Filter" is introduced for initial data reduction. It selects events with at least one soft electron or muon ($3.5 < p_\mathrm{T} < 25$ GeV for muons and $4.5 < p_\mathrm{T} < 25$ GeV for electrons) in which an $E_\mathrm{T}^\mathrm{miss}$ trigger has fired or events with at least one hard electron or muon ($p_\mathrm{T} >$25 GeV).
A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons ($e$ or $\mu$), or at least three isolated leptons, is presented. The analysis relies on the identification of $b$-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton--proton collisions at $\sqrt{s}= 13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb$^{-1}$, is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring $R$-parity conservation or $R$-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade involving sleptons, $\tilde g\to q\bar{q}\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde\ell\ell/\tilde\nu\nu$ and $\tilde\ell/\tilde\nu\to \ell/\nu\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade involving sleptons, $\tilde g\to q\bar{q}\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde\ell\ell/\tilde\nu\nu$ and $\tilde\ell/\tilde\nu\to \ell/\nu\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$ or $\lambda^{''}_{323}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar b\bar d / \bar b \bar s$.
Expected 95% CL exclusion contours on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$ or $\lambda^{''}_{323}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar b\bar d / \bar b \bar s$.
Observed 95% CL exclusion contours on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$, $\lambda^{''}_{311}$ or $\lambda^{''}_{322}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar s\bar d /\bar d \bar d/\bar s \bar s$.
Expected 95% CL exclusion contours on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$, $\lambda^{''}_{311}$ or $\lambda^{''}_{322}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar s\bar d /\bar d \bar d/\bar s \bar s$.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, which in turn decays via non-zero baryon- and lepton-number-violating RPV couplings $\lambda^{'}_{ijk}$, $\tilde g\to q\bar{q}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to q\bar{q}^{'}\ell$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, which in turn decays via non-zero baryon- and lepton-number-violating RPV couplings $\lambda^{'}_{ijk}$, $\tilde g\to q\bar{q}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to q\bar{q}^{'}\ell$.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into a pair of top-antitop quarks and the lightest neutralino, which in turn decays into light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{ijk}$, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to qqq$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into a pair of top-antitop quarks and the lightest neutralino, which in turn decays into light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{ijk}$, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to qqq$.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade involving sleptons, $\tilde g\to q\bar{q}\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde\ell\ell/\tilde\nu\nu$ and $\tilde\ell/\tilde\nu\to \ell/\nu\tilde{\chi}_1^0$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$ or $\lambda^{''}_{323}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar b\bar d / \bar b \bar s$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$, $\lambda^{''}_{311}$ or $\lambda^{''}_{322}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar s\bar d /\bar d \bar d/\bar s \bar s$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, which in turn decays via non-zero baryon- and lepton-number-violating RPV couplings $\lambda^{'}_{ijk}$, $\tilde g\to q\bar{q}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to q\bar{q}^{'}\ell$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay directly into a pair of top-antitop quarks and the lightest neutralino, which in turn decays into light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{ijk}$, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to qqq$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed and expected 95% CL upper limits on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed and expected 95% CL upper limits on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario with non-universal Higgs masses (NUHM2, see the publication Refs. [31-32]). The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed and expected 95% CL upper limits on $pp\to \tilde{d}^{}_\mathrm{R}\tilde{d}^{*}_\mathrm{R}$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$ or $\lambda^{''}_{323}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar b\bar d / \bar b \bar s$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Observed and expected 95% CL upper limits on $pp\to \tilde{d}^{}_\mathrm{R}\tilde{d}^{*}_\mathrm{R}$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$, $\lambda^{''}_{311}$ or $\lambda^{''}_{322}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar s\bar d /\bar d \bar d/\bar s \bar s$. The table also shows the signal acceptance and reconstruction efficiency for the signal region(s) with sensitivity to this scenario.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2bS, in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1500 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2bH, in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1700 GeV and $m(\tilde \chi_1^0)$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2Lsoft1b, in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via offshell top squark and top quark, $\tilde g\to t\bar{b}W^{-}\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1200 GeV and $m(\tilde \chi_1^0)$ = 940 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2Lsoft2b, in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via offshell top squark and top quark, $\tilde g\to t\bar{b}W^{-}\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1200 GeV and $m(\tilde \chi_1^0)$ = 900 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0bS, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1200 GeV, $m(\tilde \chi_1^\pm)$ = 1050 GeV, $m(\tilde \chi_2^0)$ = 975 GeV and $m(\tilde \chi_1^0)$ = 900 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0bH, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 850 GeV, $m(\tilde \chi_2^0)$ = 475 GeV and $m(\tilde \chi_1^0)$ = 100 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3L0bS, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade involving sleptons, $\tilde g\to q\bar{q}\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde\ell\ell/\tilde\nu\nu$ and $\tilde\ell/\tilde\nu\to \ell/\nu\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1400 GeV, $m(\tilde \chi_2^0)$ = 1250 GeV, $m(\tilde\ell)=m(\tilde\nu)$ = 1175 GeV and $m(\tilde \chi_1^0)$ = 1100 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3L0bH, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade involving sleptons, $\tilde g\to q\bar{q}\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde\ell\ell/\tilde\nu\nu$ and $\tilde\ell/\tilde\nu\to \ell/\nu\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1800 GeV, $m(\tilde \chi_2^0)$ = 950 GeV, $m(\tilde\ell)=m(\tilde\nu)$ = 475 GeV and $m(\tilde \chi_1^0)$ = 100 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1bS, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 600 GeV, $m(\tilde \chi_1^\pm)$ = 350 GeV and $m(\tilde \chi_1^0)$ = 250 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1bH, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 750 GeV, $m(\tilde \chi_1^\pm)$ = 200 GeV and $m(\tilde \chi_1^0)$ = 100 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 700 GeV, $m(\tilde \chi_2^0)$ = 525 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 425 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L1bH, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an antitop squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$, $\lambda^{''}_{311}$ or $\lambda^{''}_{322}$, $\tilde g\to \bar{t}\tilde{t}_1$ followed by $\tilde{t}_1\to \bar s\bar d /\bar d \bar d/\bar s \bar s$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1400 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L0b, in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, which in turn decays via non-zero baryon- and lepton-number-violating RPV couplings $\lambda^{'}_{ijk}$, $\tilde g\to q\bar{q}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to q\bar{q}^{'}\ell$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1400 GeV, $m(\tilde{\chi}_1^0)$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L2bH, in a SUSY scenario where gluinos are produced in pairs and decay directly into a pair of top-antitop quarks and the lightest neutralino, which in turn decays into light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{ijk}$, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$ followed by $\tilde{\chi}_1^0\to qqq$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1800 GeV, $m(\tilde{\chi}_1^0)$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L2bS, in a SUSY scenario where pairs of down-down squark-rights are produced and decay into a pair of top and bottom quarks via a non-zero baryon-number-violating RPV coupling $\lambda^{''}_{331}$, $\tilde{d}^{}_\mathrm{R}\to \bar t\bar b$. The masses of the superpartners involved in the process are set to $m(\tilde{d}^{}_\mathrm{R})$ = 600 GeV, $m(\tilde g)$ = 2000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L1bS, in a SUSY scenario where pairs of down-down squarks are produced and decay into a pair of top and a light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$ or $\lambda^{''}_{322}$, $\tilde{d}^{}_\mathrm{R}\to \bar t\bar s/\bar t\bar d$. The masses of the superpartners involved in the process are set to $m(\tilde{d}^{}_\mathrm{R})$ = 600 GeV, $m(\tilde g)$ = 2000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L1bM, in a SUSY scenario where pairs of down-down squarks are produced and decay into a pair of top and a light quarks via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{321}$ or $\lambda^{''}_{322}$, $\tilde{d}^{}_\mathrm{R}\to \bar t\bar s/\bar t\bar d$. The masses of the superpartners involved in the process are set to $m(\tilde{d}^{}_\mathrm{R})$ = 1000 GeV, $m(\tilde g)$ = 2000 GeV. Only statistical uncertainties are shown.
A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in $\sqrt{s}=$ 13 TeV proton--proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 3.2 fb$^{-1}$ of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1.51 TeV for a simplified model incorporating only a gluino octet and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.03 TeV are excluded for a massless lightest neutralino. These limits substantially extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.
Observed and expected background effective mass distributions in control region CRgamma for SR4jt.
Observed and expected background effective mass distributions in control region CRW for SR4jt.
Observed and expected background effective mass distributions in control region CRT for SR4jt.
Observed and expected background and signal effective mass distributions for SR2jl. For signal, a squark direct decay model with $m(\tilde q)=800$ GeV and $m(\tilde\chi^0_1)=400$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jm. For signal, a gluino direct decay model with $m(\tilde g)=750$ GeV and $m(\tilde\chi^0_1)=660$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jt. For signal, a squark direct decay model with $m(\tilde q)=1200$ GeV and $m(\tilde\chi^0_1)=0$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR4jt. For signal, a gluino direct decay model with $m(\tilde g)=1400$ GeV and $m(\tilde\chi^0_1)=0$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j. For signal, a gluino one-step decay model with $m(\tilde g)=1265$ GeV, $m(\tilde\chi^\pm_1)=945$ GeV and $m(\tilde\chi^0_1)=625$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR6jm. For signal, a gluino one-step decay model with $m(\tilde g)=1265$ GeV, $m(\tilde\chi^\pm_1)=945$ GeV and $m(\tilde\chi^0_1)=625$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR6jt. For signal, a gluino one-step decay model with $m(\tilde g)=1385$ GeV, $m(\tilde\chi^\pm_1)=705$ GeV and $m(\tilde\chi^0_1)=25$ GeV is shown.
Expected limit at 95% CL for squark direct decay model grid.
Expected limits at 95% CL +1 sigma excursion due to experimental and background-only theoretical uncertainties for squark direct decay model grid.
Expected limits at 95% CL -1 sigma excursion due to experimental and background-only theoretical uncertainties for squark direct decay model grid.
Observed limits at 95% CL for squark direct decay model grid.
Observed limits at 95% CL +1 sigma excursion due to the signal cross-section uncertainty for squark direct decay model grid.
Observed limits at 95% CL -1 sigma excursion due to the signal cross-section uncertainty for squark direct decay model grid.
Expected limit at 95% CL for gluino direct decay model grid.
Expected limits at 95% CL +1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino direct decay model grid.
Expected limits at 95% CL -1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino direct decay model grid.
Observed limits at 95% CL for gluino direct decay model grid.
Observed limits at 95% CL +1 sigma excursion due to the signal cross-section uncertainty for gluino direct decay model grid.
Observed limits at 95% CL -1 sigma excursion due to the signal cross-section uncertainty for gluino direct decay model grid.
Expected limit at 95% CL for gluino one-step decay model grid.
Expected limits at 95% CL +1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino one-step decay model grid.
Expected limits at 95% CL -1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino one-step decay model grid.
Observed limits at 95% CL for gluino one-step decay model grid.
Observed limits at 95% CL +1 sigma excursion due to the signal cross-section uncertainty for gluino one-step decay model grid.
Observed limits at 95% CL -1 sigma excursion due to the signal cross-section uncertainty for gluino one-step decay model grid.
Observed and expected background effective mass distributions in control region CRgamma for SR2jl.
Observed and expected background effective mass distributions in validation region VRZ for SR2jl.
Observed and expected background effective mass distributions in control region CRW for SR2jl.
Observed and expected background effective mass distributions in control region CRT for SR2jl.
Observed and expected background effective mass distributions in control region CRgamma for SR2jm.
Observed and expected background effective mass distributions in validation region VRZ for SR2jm.
Observed and expected background effective mass distributions in control region CRW for SR2jm.
Observed and expected background effective mass distributions in control region CRT for SR2jm.
Observed and expected background effective mass distributions in control region CRgamma for SR2jt.
Observed and expected background effective mass distributions in validation region VRZ for SR2jt.
Observed and expected background effective mass distributions in control region CRW for SR2jt.
Observed and expected background effective mass distributions in control region CRT for SR2jt.
Observed and expected background effective mass distributions in control region CRgamma for SR4jt.
Observed and expected background effective mass distributions in validation region VRZ for SR4jt.
Observed and expected background effective mass distributions in control region CRW for SR4jt.
Observed and expected background effective mass distributions in control region CRT for SR4jt.
Observed and expected background effective mass distributions in control region CRgamma for SR5j.
Observed and expected background effective mass distributions in validation region VRZ for SR5j.
Observed and expected background effective mass distributions in control region CRW for SR5j.
Observed and expected background effective mass distributions in control region CRT for SR5j.
Observed and expected background effective mass distributions in control region CRgamma for SR6jm.
Observed and expected background effective mass distributions in validation region VRZ for SR6jm.
Observed and expected background effective mass distributions in control region CRW for SR6jm.
Observed and expected background effective mass distributions in control region CRT for SR6jm.
Observed and expected background effective mass distributions in control region CRgamma for SR6jt.
Observed and expected background effective mass distributions in validation region VRZ for SR6jt.
Observed and expected background effective mass distributions in control region CRW for SR6jt.
Observed and expected background effective mass distributions in control region CRT for SR6jt.
Observed and expected event yields in VRZ as a function of signal region.
Observed and expected event yields in VRW as a function of signal region.
Observed and expected event yields in VRWv as a function of signal region.
Observed and expected event yields in VRT as a function of signal region.
Observed and expected event yields in VRTv as a function of signal region.
Observed and expected event yields in VRQa as a function of signal region.
Observed and expected event yields in VRQb as a function of signal region.
Signal acceptance for SR2jl in squark direct decay model grid.
Signal acceptance times efficiency for SR2jl in squark direct decay model grid.
Signal acceptance for SR2jm in squark direct decay model grid.
Signal acceptance times efficiency for SR2jm in squark direct decay model grid.
Signal acceptance for SR2jt in squark direct decay model grid.
Signal acceptance times efficiency for SR2jt in squark direct decay model grid.
Signal acceptance for SR4jt in squark direct decay model grid.
Signal acceptance times efficiency for SR4jt in squark direct decay model grid.
Signal acceptance for SR5j in squark direct decay model grid.
Signal acceptance times efficiency for SR5j in squark direct decay model grid.
Signal acceptance for SR6jm in squark direct decay model grid.
Signal acceptance times efficiency for SR6jm in squark direct decay model grid.
Signal acceptance for SR6jt in squark direct decay model grid.
Signal acceptance times efficiency for SR6jt in squark direct decay model grid.
Signal acceptance for SR2jl in gluino direct decay model grid.
Signal acceptance times efficiency for SR2jl in gluino direct decay model grid.
Signal acceptance for SR2jm in gluino direct decay model grid.
Signal acceptance times efficiency for SR2jm in gluino direct decay model grid.
Signal acceptance for SR2jt in gluino direct decay model grid.
Signal acceptance times efficiency for SR2jt in gluino direct decay model grid.
Signal acceptance for SR4jt in gluino direct decay model grid.
Signal acceptance times efficiency for SR4jt in gluino direct decay model grid.
Signal acceptance for SR5j in gluino direct decay model grid.
Signal acceptance times efficiency for SR5j in gluino direct decay model grid.
Signal acceptance for SR6jm in gluino direct decay model grid.
Signal acceptance times efficiency for SR6jm in gluino direct decay model grid.
Signal acceptance for SR6jt in gluino direct decay model grid.
Signal acceptance times efficiency for SR6jt in gluino direct decay model grid.
Signal acceptance for SR2jl in gluino one-step decay model grid.
Signal acceptance times efficiency for SR2jl in gluino one-step decay model grid.
Signal acceptance for SR2jm in gluino one-step decay model grid.
Signal acceptance times efficiency for SR2jm in gluino one-step decay model grid.
Signal acceptance for SR2j5 in gluino one-step decay model grid.
Signal acceptance times efficiency for SR2jt in gluino one-step decay model grid.
Signal acceptance for SR4jt in gluino one-step decay model grid.
Signal acceptance times efficiency for SR4jt in gluino one-step decay model grid.
Signal acceptance for SR5j in gluino one-step decay model grid.
Signal acceptance times efficiency for SR5j in gluino one-step decay model grid.
Signal acceptance for SR6jm in gluino one-step decay model grid.
Signal acceptance times efficiency for SR6jm in gluino one-step decay model grid.
Signal acceptance for SR6jt in gluino one-step decay model grid.
Signal acceptance times efficiency for SR6jt in gluino one-step decay model grid.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.