An analysis of theA-dependence of the target-diffractive cross-section is presented. Data on thet-dependence of the cross section are fitted in the usual exponential form. The mean multiplicity of negative particles produced diffractively is found not to be sensitive to the nuclear mass. TheA-dependence of the emitted proton multiplicity and the angular distributions of the produced charged particles suggest re-scattering of the emitted particles on other nucleons of the nucleus. All these facts are compared with results obtained by Monte-Carlo simulation according to a two-component Dual Parton Model.
For target-diffractive cross-section.
For target-diffractive cross-section.
Multiplicities for the diffractive system.
In a 48 000-picture exposure of the Fermilab 30-inch hydrogen bubble chamber to a 205 GeV/ c π − beam, we have measured 169 events of the reaction, π − p → π − π + π − p, with a cross section of 635 ± 61 μ b. This reaction proceeds almost entirely via low mass π − → 3 π and p → p ππ dissociation. Factorization is satisfied for p → pππ dissociation in πp and pp interactions.
No description provided.
We have analysed the reaction π + p → pπ + π + π − at 16 GeV/c by means of the prism plot analysis (PPA) as proposed by Pless et al. We have separated ten reaction channels contributing to the final state pπ + π + π − and present the results in terms of partial and differential cross sections, invariant mass and decay angular distributions. We show that the PPA is a self-controlling method which is demonstrated by the emergence of a broad (3π) + enhancement around 1800 MeV decaying into ρ 0 π + .
PARTIAL CROSS SECTIONS FOR THE (P PI+ PI+ PI-) FINAL STATE.
The results of a study of the reaction π-p→π-π-π+p at2 147 GeV/c carried out at the Fermilab Proportional Wire 30″ Bubble Chamber Hybrid Spectrometer are reported. More than 92% of the cross-section ((670±41) μb) for this reaction is contained in those for proton and pion diffraction dissociation. The cross-sections for pion diffraction events with three-pion invariant mass in given regions are in agreement with values obtained by extrapolation of fits to data at lower incidentpion momenta. ρ0π- events make an important contribution in the A1 and A2 mass regions, and the data are consistent with contributions from f0π- in the A3 mass region. The cross-section for proton diffraction events is in agreement with a smooth extrapolation of the data at lower momentum.
No description provided.
This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5<Q^2<20~\gevtwo$. In the kinematic range $4 \times 10^{-4} < \xpom < 0.03$ and $0.015<\beta<0.5$, the $\xpom$ dependence of $\ftwodfour$ is fitted with a form $\xpoma$, yielding $a= \ftwodfouraerr$. Upon integration over $t$, the structure function $\ftwod$ is determined in a kinematic range extending to higher $\xpom$ and lower $\beta$ compared to our previous analysis; the results are discussed within the framework of Regge theory.
The measured distribution of T, the squared momentum transfer to the virtual pluton.
Slope of the T distribution.
The structure function F2(NAME=D4).
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The total elastic cross section and the observed elastic cross section within the fiducial volume.
We present a total of 427 np analyzing power data points in a large angular interval at 12 energies between 0.312 and 1.10 GeV. The SATURNE II polarized beam of free monochromatic neutrons was scattered either on the Saclay frozen-spin polarized proton target or on CH 2 and C targets. Present results are compared with existing elastic and quasieleastic data.
Results of the analyzing power for n p scattering at 0.312 GeV. The CH2 target was used.
Results of the analyzing power for n p scattering at 0.363 GeV. The CH2 target was used.
Results of the analyzing power for n p scattering at 0.800 GeV.
We present a total of 273 independent data points of the analyzing powers A oono (nP) and A ooon (nP) in a large angular interval at four energies between 0.477 and 0.940 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. Part of the data was obtained with a CH 2 target. A comparison of the two measured observables allows one to determine the polarization of the neutron beam. The present results provide an important contribution to any future theoretical or phenomenological analysis.
No description provided.
No description provided.
Data from 97.7 to 123.4 degrees are combined beam and target analyzing powers.
We present new measurements of the analyzing power for np scattering at 10.03 MeV accurate to ± 1 × 10−3. A new source of systematic error, related to resonances in n−C12 scattering in the neutron detectors, is discussed. The interaction of the neutron magnetic moment with the Coulomb field of the proton is found to make a significant contribution to the analyzing power at the present level of accuracy. The results are compared to predictions of nucleon-nucleon potential models. New, improved values are reported for the p and d-wave spin-orbit phase-shift splittings.
No description provided.
An experiment resulting in the first measurement of the isospin-mixing, charge-symmetry-violating component of the n−p interaction has been performed. The experiment determined the difference in the angles of the zero crossing of the neutron and proton analyzing powers An and Ap at 477 MeV. In terms of the laboratory scattering angle of the neutron, the measured difference is θ0n(An)−θ0n(Ap)=+0.13° ±0.06° (±0.03°), where the second error is a worst-case estimate of systematic error. The resulting difference in the analyzing powers at the zero-crossing angle is An−Ap=+0.0037 ±0.0017 (±0.0008).
No description provided.