We have measured differential cross sections for both π+p and π−p elastic scattering at incident-pion kinetic energies of 30, 50, 70, and 90 MeV in the center-of-mass angular range between 50° and 150°. The experiment detected pions scattered from a liquid-hydrogen target with multiwire proportional chambers and scintillation-counter range telescopes. The relative accuracy of each angular distribution is better than 5%, while the absolute cross sections have uncertainties of 4% to 25%. Our results for the absolute cross section for π+p scattering at 30 and 90 MeV are inconsistent with previous measurements. Our π−p measurements comprise the first extensive set of precision differential cross sections below 90 MeV.
No description provided.
No description provided.
No description provided.
Data are presented for the reaction ep → ep π 0 at a nominal momentum transfer squared of 1.0 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Differential cross sections have been measured for isobar masses in the range 1.19–1.73 GeV/ c 2 .
No description provided.
No description provided.
No description provided.
The ratio of π − to π + electroproduction cross sections from deuterons has been measured in the resonance region at an average four-momentum transfer squared of 0.5 (GeV/ c ) 2 . Results are presented over a wide range of pion production angles and comparisons are made with theoretical predictions based on SU(6) w symmetry and the Melosh transformation.
No description provided.
No description provided.
No description provided.
This paper presents the results of a study of the dominant neutral final states from π−p interactions. The data were obtained in an experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron, using a set of steel-plate optical spark chambers surrounding a liquid-hydrogen target. We present differential and total cross sections for the reactions (1) π−p→n+π0 and (2) π−p→n+η0(η0→2γ) and total cross sections for the reactions (3) π−p→n+kπ0 (k=2, 3, 4, and 5) and (4) π−p→all neutrals for eighteen values of beam momentum in the interval 1.3 to 4.0 GeV/c. The angular distributions for (1) and (2) have been analyzed in terms of expansions in Legendre polynomials, the coefficients for which are also given.
No description provided.
SIG = 4*PI*LEG(L=0).
FORWARD DIFFERENTIAL CROSS SECTION CALCULATED FROM LEGENDRE POLYNOMIAL COEFFICIENTS AND ERROR MATRICES.
The ratio of π - to π + electroproduction cross sections from deuterium has been measured in the resonance region, at a four-momentum transfer squared close to −1.0 (GeV/ c ) 2 . Results in the forward direction are presented and a comparison is made with predictions based on SU(6) W and the Melosh transformation.
No description provided.
We present a series of numerical and statistical techniques for interpolating and combining ("amalgamating") data from meson-nucleon scattering experiments. These techniques have been extensively applied to πp elastic and charge-exchange differential-cross-section and polarization data in the resonance region. The amalgamation is done by fitting a momentum- and angle-dependent interpolating surface to the data over a moderately narrow momentum range, typically ∼150 MeV/c, using the interpolating surface to shift data in a narrower central momentum region into fixed angular bins at a predetermined central momentum, and then statistically combining the data in each bin. The fitting procedure takes into account normalization errors, momentum calibration errors, momentum resolution, electromagnetic corrections, threshold structure, and inconsistencies among the data. The full covariance matrix of the amalgamated data is calculated, including contributions of statistical error, systematic error, and interpolation error. Techniques are presented for extracting from the covariance matrix information on the collective statistical fluctuations which correlate the errors of the amalgamated data. These fluctuations are described in terms of "correlation vectors" which facilitate the use of the amalgamated data as input for resonance-region phenomenology.
No description provided.
No description provided.
No description provided.
We present measurements from a counter-optical spark chamber experiment of the differential cross sections for p̄p → π 0 π 0 , π 0 η 0 at 25 momenta in the range 1.1 − 2.0 GeV/ c (c.m. energy 2.12 to 2.43 GeV). Approximately 750 000 pictures were taken in the experiment.
THE ANGULAR DISTRIBUTIONS IN THE PUBLISHED FIGURES ARE NOT TABULATED HERE SINCE THEY ARE ONLY RECONSTRUCTED FROM THE LEGENDRE EXPANSION COEFFICIENTS WHICH WERE MEASURED DIRECTLY FROM THE DATA.
No description provided.
LEGENDRE COEFFICIENTS NORMALIZED SO THAT LEG(L=0) = SIG/(2*PI) (IDENTICAL PARTICLES IN FINAL STATE). THESE ARE PLOTTED IN FIG. 1 OF THE FOLLOWING PAPER.
The rates for forward electroproduction of single charged pions from deutrium have been measured in the resonance region, at a virtual photon mass squared ≈−0.5( GeV/ c 2 ) 2 . Results are presented in the form of a π − to π + cross-section ratio.
No description provided.
The polarization parameter P for the reactions p p → π − π + and p p → K − K + has been measured over essentially the full angular range at ll laboratory momenta between 1.0 and 2.2. GeV/ c , using a proton target polarized perpendicular to the scattering plane. The angles and momenta of both final state particles were determined from wire spark chambers, using the deflection caused by the polarized target magnet. Between 1000 and 5300 π − π + events, and 140 and 1300 K − K + events, were measured at each momentum. Differential cross sections for p p → π − π + were obtained. These are in excellent agreement with previous results. The polarization parameter for both channels is very close to +1 over much of the angular range. Legendre polynomial fits to the data are presented.
THE DIFFERENTIAL CROSS SECTIONS IN THIS EXPERIMENT AGREE WITH THE ONES FROM THE AUTHORS' EARLIER EXPERIMENT (E. EISENHANDLER ET AL., NP B96, 109(1975)) USING A LIQUID HYDROGEN TARGET, THOUGH THEY DO NOT CONSIDER THE PRESENT ONES QUITE AS RELIABLE.
No description provided.
No description provided.
The most recent total-cross-section data are used to calculate real parts of the forward elastic π±p scattering amplitudes from threshold to 240 GeV/c. Using statistical and systematic uncertainties of the total cross sections and their momenta, along with uncertainties of the subtraction and coupling constants, unphysical cuts, and cross-section extrapolations, we calculate the uncertainties of the real amplitudes. Our results are compared to experimental and other theoretical determinations of the π±p forward real amplitudes.
No description provided.
No description provided.
No description provided.