A search is presented for flavour-changing neutral-current interactions involving the top quark, the Higgs boson and an up-type quark ($q=u,c$) with the ATLAS detector at the Large Hadron Collider. The analysis considers leptonic decays of the top quark along with Higgs boson decays into two $W$ bosons, two $Z$ bosons or a $\tau^{+}\tau^{-}$ pair. It focuses on final states containing either two leptons (electrons or muons) of the same charge or three leptons. The considered processes are $t\bar{t}$ and $Ht$ production. For the $t\bar{t}$ production, one top quark decays via $t\to Hq$. The proton-proton collision data set analysed amounts to 140 fb$^{-1}$ at $\sqrt{s}=13$ TeV. No significant excess beyond Standard Model expectations is observed and upper limits are set on the $t\to Hq$ branching ratios at 95% confidence level, amounting to observed (expected) limits of $\mathcal{B}(t\to Hu)<2.8\,(3.0) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.3\,(3.8) \times 10^{-4}$. Combining this search with other searches for $tHq$ flavour-changing neutral-current interactions previously conducted by ATLAS, considering $H\to b\bar{b}$ and $H\to\gamma\gamma$ decays, as well as $H\to\tau^{+}\tau^{-}$ decays with one or two hadronically decaying $\tau$-leptons, yields observed (expected) upper limits on the branching ratios of $\mathcal{B}(t\to Hu)<2.6\,(1.8) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.4\,(2.3) \times 10^{-4}$.
Pre-fit background composition of the SR$2\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$2\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$3\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider during the years 2015-2018, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z}= 0.86 \pm 0.04~\mathrm{(stat.)} \pm 0.04~\mathrm{(syst.)}~$pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the $t\bar{t}Z$ system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in $t\bar{t}Z$ events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of $1.8$ standard deviations.
All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.
Definition of the dilepton signal regions.
Definition of the trilepton signal regions.
For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidity at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV, almost 300 times higher than in previous measurements of diffractive production in proton-nucleus collisions. For lead dissociation processes, which correspond to the pomeron-lead event topology, the EPOS-LHC generator predictions are a factor of two below the data, but the model gives a reasonable description of the rapidity gap spectrum shape. For the pomeron-proton topology, the EPOS-LHC, QGSJET II, and HIJING predictions are all at least a factor of five lower than the data. The latter effect might be explained by a significant contribution of ultra-peripheral photoproduction events mimicking the signature of diffractive processes. These data may be of significant help in understanding the high energy limit of quantum chromodynamics and for modeling cosmic ray air showers.
Differential cross section for events with Pomeron-Lead ($\mathrm{I\!P}\mathrm{Pb}$) topology obtained at the reconstruction level for $|\eta| < 3$ region. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV
Differential cross section for events with Pomeron-Proton ($\mathrm{I\!P}\mathrm{p} + \gamma \mathrm{p}$) topology obtained at the reconstruction level for $|\eta| < 3$ region. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV
Reconstruction level differential cross section spectla, obtained for the central acceptance, $|\eta| < 3$, for events with Pomeron-Lead ($\mathrm{I\!P}\mathrm{Pb}$) topology compared to the to the EPOS-LHC predictions, broken down into the non-diffractive (ND), central diffractive (CD), single diffractive (SD) and double diffractive (DD) components. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV
A search for heavy resonances decaying to a pair of Z bosons is performed using data collected with the CMS detector at the LHC. Events are selected by requiring two oppositely charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum, which is interpreted as arising from the decay of a second Z boson to two neutrinos. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The hypothesis of a spin-2 bulk graviton (X) decaying to a pair of Z bosons is examined for 600 $\le m_\mathrm{X} \le$ 2500 GeV and upper limits at 95% confidence level are set on the product of the production cross section and branching fraction of X $\to$ ZZ ranging from 100 to 4 fb. For bulk graviton models characterized by a curvature scale parameter $\tilde{k} =$ 0.5 in the extra dimension, the region $m_\mathrm{X} < $ 800 GeV is excluded, providing the most stringent limit reported to date. Variations of the model considering the possibility of a wide resonance produced exclusively via gluon-gluon fusion or $\mathrm{q}\overline{\mathrm{q}}$ annihilation are also examined.
The $p_T^Z$ distributions for electron channel comparing the data and background model with systematic uncertainty.
The $p_T^Z$ distributions for muon channel comparing the data and background model with systematic uncertainty.
The $p_T ^{miss}$ distributions for electron channel comparing the data and background model with systematic uncertainty.
Transverse momentum spectra of charged pions, kaons, and protons are measured in proton-proton collisions at sqrt(s) = 13 TeV with the CMS detector at the LHC. The particles, identified via their energy loss in the silicon tracker, are measured in the transverse momentum range of pt ~ 0.1-1.7 GeV and rapidities abs(y) < 1. The pt spectra and integrated yields are compared to previous results at smaller sqrt(s) and to predictions of Monte Carlo event generators. The average pt increases with particle mass and charged particle multiplicity of the event. Comparisons with previous CMS results at sqrt(s) = 0.9, 2.76, and 7 TeV show that the average pt and the ratios of hadron yields feature very similar dependences on the particle multiplicity in the event, independently of the center-of-mass energy of the pp collision.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) at a centre-of-mass energy of 13 TeV.
Measured transverse momentum distributions of identified charged hadrons (PI-, K- and PBAR) at a centre-of-mass energy of 13 TeV.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) at a centre-of-mass energy of 13 TeV for multiplicity class 1 (Nrec=0-9).
The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb$^{-1}$ of Pb+Pb data and 4.0 pb$^{-1}$ of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet $p_{\mathrm{T}}$ and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.
D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 2.1.
D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 0.3.
D(pt) distributions for pp and Pb+Pb collisions, jet rapidity 0.3 < |y| < 0.8.
A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at sqrt(s) = 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 inverse femtobarns. Events are selected with an electron and a muon that have transverse impact parameter values between 0.02 cm and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-mu final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-mu final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to c tau = 2 cm, excluding masses below 790 GeV at 95% confidence level.
Electron transverse impact parameter distribution for data and expected background processes after the preselection requirements have been applied. The event yields per bin have been rescaled to account for the varying bin sizes. The rightmost bin contains the overflow entries.
Muon transverse impact parameter distribution for data and expected background processes after the preselection requirements have been applied. The event yields per bin have been rescaled to account for the varying bin sizes. The rightmost contains the overflow entries.
Numbers of expected and observed events in the three search regions (see the text for the definitions of these regions). Background and signal expectations are quoted as $N_{\text{exp}} \pm 1\sigma$ stat $\pm 1\sigma$ syst. If the estimated background is zero in a particular search region, the estimate is instead taken from the preceding region. Since this should always overestimate the background, we denote this by a preceding "<".
Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb$^{-1}$. Jets were reconstructed using the anti-$k_{t}$ algorithm with distance parameter values $R$ = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for $R=0.4$ jets with $p_{{T}}^{\mathrm{jet}}> 100$ GeV. Commensurate minimum $p_{\mathrm{T}}$ values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate $z$ values, $0.04 \lesssim z \lesssim 0.2$ and an enhancement in fragment yield for $z \lesssim 0.04$. A smaller, less significant enhancement is observed at large $z$ and large $p_{\mathrm{T}}$ in central collisions.
Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.3 jets. The errors represent combined statistical and systematic uncertainties.
Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.2 jets. The errors represent combined statistical and systematic uncertainties.
D(z) distribution for R=0.4 jets.
Charged particle multiplicities are studied in proton-proton collisions in the forward region at a centre-of-mass energy of $\sqrt{s} = 7\;$TeV with data collected by the LHCb detector. The forward spectrometer allows access to a kinematic range of $2.0<\eta<4.8$ in pseudorapidity, momenta down to $2\;$GeV/$c$ and transverse momenta down to $0.2\;$GeV/$c$. The measurements are performed using minimum-bias events with at least one charged particle in the kinematic acceptance. The results are presented as functions of pseudorapidity and transverse momentum and are compared to predictions from several Monte Carlo event generators.
Charged particle density as function of pseudorapidity for events with at least one prompt final state charged particle in fiducial range. The first quoted uncertainty is statistical and the second systematic.
Charged particle density as function of transverse momentum for events with at least one prompt final state charged particle in fiducial range. The first quoted uncertainty is statistical and the second systematic.
Observed charged particle multiplicity distribution in the full kinematic range of the analysis. The first quoted uncertainty is statistical and the second systematic.
The production of jets associated to bottom quarks is measured for the first time in PbPb collisions at a center-of-mass energy of 2.76 TeV per nucleon pair. Jet spectra are reported in the transverse momentum (pt) range of 80-250 GeV, and within pseudorapidity abs(eta < 2). The nuclear modification factor (R[AA]) calculated from these spectra shows a strong suppression in the b-jet yield in PbPb collisions relative to the yield observed in pp collisions at the same energy. The suppression persists to the largest values of pt studied, and is centrality dependent. The R[AA] is about 0.4 in the most central events, similar to previous observations for inclusive jets. This implies that jet quenching does not have a strong dependence on parton mass and flavor in the jet pt range studied.
The b-jet yield as a function of pT is for the 0-100% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.
The b-jet yield as a function of pT is for the 0-10% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.
The b-jet yield as a function of pT is for the 10-30% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.