A tagged photon beam (2.8<Eγ<4.8 GeV) and multiparticle spectrometer have been used to study the photoproduction in hydrogen ofK+Λ(1520). Precise values for the mass and width of the Λ(1520) are given. The total cross-section is found to fall with increasing photon energy like (6.5±0.7)Eγ−(2.1±0.2) μb. The differential cross sectiondσ/dt indicates peripheral forward production and exhibits no evidence for shrinkage when compared with higher energy data. The Λ(1520) spin density matrix shows thatK exchange alone cannot account for the production mechanism. The reaction is found to resemble the process γp→K+ Λ(1115) in all measurable respects.
FITTED CROSS SECTION ENERGY DEPENDENCE IS SIG = (6.7 +- 0.7 MUB*GEV**2) * P**(-2.1 +- 0.2), INCLUDING HIGHER ENERGY DATA.
EXPONENTIAL SLOPE IS 6.1 +- 2.0 GEV**-2 FOR -T = 0.2 TO 0.7 GEV**2.
No description provided.
Differential cross sections for elastic scattering of pions and protons on helium have been measured at incident momenta ranging from 50 to 300 GeV/ c in the t -range 0.008 < | < | < 0.05 (GeV/ c ) 2 . Both recoil α-particles and forward particles were detected in this experiment. The experimental method provided an absolute normalization of the cross sections with an estimated precision of 1%. From the analysis of the data, the diffraction slope parameters and total cross sections have been obtained. The results are compared with Glauber model calculations.
No description provided.
No description provided.
No description provided.
We have observed high mass resonances with mass above 1.5 GeV in pp interactions at 405 GeV/ c . We obtain cross sections 13.2 ± 2.9, 5.1 ± 2.0, 2.5 ± 1.5 and 0.27 ± 0.18 mb for ϱ 0 , f, g 0 , and h meson production, respectively. The invariant x and p T 2 distributions for produced resonances are analysed. A relative comparison of the average 〈 p T 〉 distribution as a function of resonance masses with that for μ + μ − pair production shows remarkable similarity.
ONLY INCLUSIVE CROSS SECTIONS ARE GIVEN IN THE ORIGINAL PAPER. MULTIPLICITY VALUES ARE OBTAINED BY DIVIDING THE CORRESPONDING CROSS SECTION BY INELASTIC P P 32.0+-1.0 MB ONE ACCORDING TO PR D20, 37.
Production of pions, kaons, protons and antiprotons has been studied in e + e − annihilations at 12 and 30 GeV centre of mass energy using time of flight techniques. The fractional yield of charged kaons and baryons appears to rise with outgoing particle momentum. At our highest energy at least 40% of e + e − annihilations into hadrons are estimated to contain baryons.
No description provided.
No description provided.
No description provided.
The average charged multiplicity in proton-proton interactions has been studied at √ s = 62 GeV. A very good agreement with the average charged multiplicity measured in e + e − annihilation at different energies is obtained by redefining, in p-p, the correct energies available for particle production. This means that a p-p collision at √ s = 62 GeV does in fact correspond to a large range of effective hadronic energies available for particle production.
AVERAGE CHARGED MULTIPLICITY AS A FUNCTION OF HADRONIC ENERGY WHERE E(NAME=HAD) IS THE INCIDENT PROTON ENERGY (COLLIDING BEAM ENERGY) MINUS THE LEADING PROTON ENERGY.
With use of the LENA detector at the DORIS e+e− storage ring, the hadronic cross section and the μ-pair decay branching ratio of the ϒ(9.46) resonance have been measured. Γee=1.23±0.10 (±0.14) keV, Bμμ=[3.5±1.4 (±0.4)]%, and Γtot=35−10+25 ({+9}{−7}) keV have been obtained. The first set of errors gives the statistical uncertainty. The numbers in parentheses represent systematic errors arising from the uncertainty in the total hadronic cross section.
No description provided.
In this Letter, a measurement of inclusive muon production (pμ>2 GeV/c) in e+e− annihilation into hadrons at center-of-mass energies from s=12 to 31.6 GeV is reported. The results agree with the expected semileptonic decays from charmed and bottom mesons.
MUONS PER HADRONIC EVENT.
INVARIANT CROSS SECTION, ASSUMING HADRONIC CROSS SECTION HAS R VALUE OF 3.9 +- 0.5.
We present results of a detailed analysis of inclusive direct photon production at the ψ(3095). The direct-photon momentum distribution for x>0.4 is presented and compared with the leading-order quantum-chromodynamic prediction. The total production rate is found to be consistent with theoretical expectations, but the observed momentum distribution is considerably softer. Results of an analysis of some inclusive properties of the hadronic system recoiling against the direct photon are presented. The mean charged-particle and Ks multiplicities are presented as functions of the invariant mass of the hadronic system. These data agree well with the corresponding mean multiplicities measured in e+e− annihilations at center-of-mass energies comparable to the invariant mass of the hadronic system.
TOTAL INCLUSIVE PHOTON MOMENTUM SPECTRUM. ERRORS ARE STATISTICAL ONLY.
PHOTON SPECTRUM PREDICTED FROM MEASUREMENT OF THE PI0 AND ETA DISTRIBUTIONS. ERRORS INCLUDE BOTH STATISTICAL AND RELATIVE SYSTEMATIC COMPONENTS.
INCLUSIVE PI0 MOMENTUM DISTRIBUTION. QUOTED ERRORS ARE STATISTICAL ONLY. OVERALL AND RELATIVE SYSTEMATIC ERRORS ARE LESS THAN 30 PCT AND MAY VARY SLOWLY WITH X.
During an energy scan at the Cornell Electron Storage Ring, with use of the Columbia University-Stony Brook NaI detector, an enhancement in σ(e+e−→hadrons) is observed at center-of-mass energy ∼10.55 GeV. The mass and leptonic width of this state (ϒ′′′) suggest that it is the 4S13 bound state of the b quark and its antiquark. After applying to the data a cut in a (pseudo) thrust variable, the natural width is measured to be Γ=12.6±6.0 MeV, indicating that the ϒ′′′ is above the threshold for BB¯ production.
VISIBLE TOTAL HADRONIC CROSS SECTION FOR FIRST, THIRD AND FOURTH UPSILONS.
The average transverse momentum squared, 〈 p ⊥ 2 〉, of hadrons is studied as a function of W 2 and of Q 2 for ν and ν interactions on an isoscalar target. An increase of 〈 p ⊥ 2 〉 with W 2 is observed for the hadrons emitted forward in the hadronic c.m.s. The p ⊥ dependence of the fragmentation function is found to factorise from the structure function at fixed W , but does not factorise at fixed Q 2 . Unlike the case of forward-going particles, the 〈 p ⊥ 2 〉 of hadrons going backward in the c.m.s. shows no strong dependence on W 2 .
No description provided.
No description provided.
No description provided.