Measurements are presented of the inclusive charged-particle cross sections s dσdx for e+e− annihilation at center-of-mass energies of 5.2, 6.5, and 29.0 GeV. Significant scale breaking is observed in these cross sections.
Inclusive Ω− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.014±0.006±0.004 Ω−, Ω¯+ per hadronic event. This is roughly 35 times the Lund-model prediction of 0.0004 Ω−, Ω¯+ per hadronic event, but comparable to the Webber-model prediction of 0.006 Ω−, Ω¯+ per hadronic event. The large rate of Ω− production, compared with production rates for other baryons, and with theoretical predictions based on diquark models, indicates that spin suppression does not hold for Ω− production.
Inclusive Ξ− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.017±0.004±0.004 Ξ−+Ξ¯+ per hadronic event. A search for Ξ*0(1530)→Ξ−π+ leads to an upper limit of N(Ξ*0)/N(Ξ−)<0.35 at a 90% confidence level.
The production of Λ hyperons in e+e− annihilation has been measured as a function of their total momenta, transverse momenta, and the event thrust. The total production rate is 0.213±0.012±0.018 Λ or Λ¯ per hadronic event. The observation of correlations in rapidity and angles for events with two detected Λ decays supports fragmentation models with local baryon-number compensation.
We have measured the K0+K¯ 0 inclusive cross section in e+e− annihilation at 29 GeV with the Mark II detector SLAC PEP. We find 1.27±0.03±0.15 K0+K¯ 0 per hadronic event. We have also used time-of-flight particle identification to measure the K± rate over the momentum range 300–900 MeV/c.
A precise measurement of the ratio R of the total cross section e+e−→hadrons to the pointlike cross section e+e−→μ+μ− at a center-of-mass energy of 29.0 GeV is presented. The data were taken with the upgraded Mark II detector at the SLAC storage ring PEP. The result is R=3.92±0.05±0.09. The luminosity has been determined with three independent luminosity monitors measuring Bhabha scattering at different angular intervals. Recent calculations of higher-order QED radiative corrections are used to estimate the systematic error due to missing higher-order radiative corrections in the Monte Carlo event generators.
Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
We have studied the energy-energy correlation in e+e− annihilation into hadrons at √s =29 GeV using the Mark II detector at the SLAC storage ring PEP. We find to O(αs2) that αs=0.158±0.003±0.008 if hadronization is described by string fragmentation. Independent fragmentation schemes give αs=0.10–0.14, and give poor agreement with the data. A leading-log shower fragmentation model is found to describe the data well.
The production of $J/\psi$ mesons in continuum $e^+e^-$ annihilations has been studied with the BABAR detector at energies near the $\Upsilon(4S)$ resonance, approximately 10.6 GeV. The mesons are distinguished from $J/\psi$ production in B decays through their center-of-mass momentum and energy. We measure the cross section $e^+e^-\to J/\psi X$ to be $2.52\pm 0.21\pm 0.21$ pb: for momentum above 2 GeV/c, it is $1.87\pm 0.10\pm 0.15$ pb. We set a 90% confidence level upper limit on the branching fraction for direct $\Upsilon(4S)$\to J/\psi X$ decays at $4.7\times 10^{-4}$.
The polarization of tau leptons in the reaction e+ e- --> tau+ tau- has been measured using a e+e- collider, TRISTAN, at the center-of-mass energy of 58 GeV. From the kinematical distributions of daughter particles in tau --> e nu nu-bar, mu nu nu-bar, rho nu or pi(K) nu decays, the average polarization of tau- and its forward-backward asymmetry have been evaluated to be 0.012 +- 0.058 and 0.029 +- 0.057, respectively.