Measurements of the differential cross-section of the reaction p p ---> d pi+ from 3.0 to 5.0 gev/c

Anderson, H.L. ; Larson, D.A. ; Myrianthopoulos, L.C. ; et al.
Phys.Rev.D 9 (1974) 580-596, 1974.
Inspire Record 93111 DOI 10.17182/hepdata.21941

A measurement of the complete differential cross section for the reaction pp→dπ+ at 3.00, 3.20, 3.43, 3.65, 3.83, 4.00, 4.20, and 5.05 GeVc incident proton momentum has been made in an attempt to establish the role of the Δ (1950) in this region. The data show that the previously observed enhancement in the forward cross section between 3 and 4 GeVc due to this isobar is an effect which damps out quickly as the production angle departs from zero degrees, in contrast with the well-known enhancement at 1.35 GeVc, which is evident at all angles. In particular, the one-pion-exchange model is in poor agreement with the extended set of data. A detailed description is given of a novel proportional-wire-chamber system which facilitated the selection of this rather rare reaction from a very high competing background.

3 data tables match query

Axis error includes +- 6/6 contribution.

Axis error includes +- 6/6 contribution.

No description provided.


Measurements of d p backward elastic scattering at 3.43, 4.50, 5.75, and 6.60 gev/c incident deuteron momentum

Dubal, L. ; Hargrove, C.K. ; Hincks, E.P. ; et al.
Phys.Rev.D 9 (1974) 597-603, 1974.
Inspire Record 93110 DOI 10.17182/hepdata.21938

Differential cross sections for dp elastic scattering from 60° to 175° center of momentum (c.m.) were measured at 3.43, 4.50, 5.75, and 6.60 GeVc incident deuteron momentum. The measurements were made with a two-arm magnetic spectrometer, making use of multiwire proportional chamber detectors. The deuterons were accelerated at the Bevatron of the Lawrence Berkeley Laboratory. Data are compared with predictions of the baryon-pickup model and the one-pion-exchange model. The backward dip at 180° c.m. for 4.5 GeVc, predicted by Craigie and Wilkin using the one-pion-exchange model, is not observed, but reasonable fits to the momentum variation and angular distributions are found. When the data are plotted against the variable Δ of the baryon-pickup model, the s dependence is greatly reduced.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

PROTON DEUTERON ELASTIC SCATTERING AT 800-MeV

Winkelmann, E. ; Bevington, P.R. ; Mcnaughton, M.W. ; et al.
Phys.Rev.C 21 (1980) 2535-2541, 1980.
Inspire Record 158610 DOI 10.17182/hepdata.26340

Differential cross sections and polarization analyzing powers for proton-deuteron elastic scattering have been measured at 800 MeV incident proton kinetic energy over the range of center-of-mass angles from 14.1° to 153.6°. The differential cross sections are described by the Glauber theory of impulse approximation at forward angles (−t<0.5) and exhibit the exponential dependence on cosθc.m. typical for these energies at backward angles (cosθc.m.<−0.5). The analyzing power shows considerable structure with strong positive peaks at forward and backward angles and a sharp dip at t=−0.4 typical at intermediate energies. There is no evidence for correspondence of the angular dependence of the analyzing power with that for the pp→dπ+ reaction. At large momentum transfer the data favor calculations based on multiple scattering with a modified deuteron form factor rather than N* exchange. NUCLEAR REACTIONS H2(p,p)H2, E=800 MeV, measured σ(θ) and Ay(θ).

1 data table match query

No description provided.


Deuteron Photodisintegration at Photon Energies Between 200-{MeV} and 700-{MeV} in Backward Direction

Althoff, K.H. ; Anton, G. ; Bour, D. ; et al.
Z.Phys.C 21 (1983) 149, 1983.
Inspire Record 192906 DOI 10.17182/hepdata.50170

The differential cross section of the deuteron photodisintegration was measured at a protion c.m. angle of 180 degrees and for photon energies between 180 and 730 MeV. The protons were detected in a magnetic spectrometer. The proton energy resolution varied between 30 MeV and 50 MeV FWHM. Since these are the first data at 180 degrees in this energy range a comparison can only be done with data from other laboratories extrapolated to 180 degrees and with theoretical predictions. The agreement with existing calculations is poor. Contributions of dibaryons to the cross section seem not to improve the situation.

1 data table match query

BEAM ERROR D(E) = 50.000 MEV.