Date

Measurement of inclusive J/$\psi$ pair production cross section in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 108 (2023) 045203, 2023.
Inspire Record 2648593 DOI 10.17182/hepdata.144368

The production cross section of inclusive J/$\psi$ pairs in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV is measured with ALICE. The measurement is performed for J/$\psi$ in the rapidity interval $2.5 < y < 4.0$ and for transverse momentum $p_{\rm T} > 0$. The production cross section of inclusive J/$\psi$ pairs is reported to be $10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)}$ nb in this kinematic interval. The contribution from non-prompt J/$\psi$ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data.

1 data table

Inclusive JPSI pair cross section in $2.5 < y < 4.0$.


Study of Drell-Yan dimuon production in proton-lead collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 182, 2021.
Inspire Record 1849180 DOI 10.17182/hepdata.88292

Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb$^{-1}$. The differential cross section as a function of the dimuon mass is measured in the range 15-600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15-60 GeV and 60-120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum $p_\mathrm{T}$ and of a geometric variable $\phi^*$ are measured, where $\phi^*$ highly correlates with $p_\mathrm{T}$ but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.

28 data tables

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of dimuon invariant mass. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $15<m_{\mu\mu}<60$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $60<m_{\mu\mu}<120$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

More…

$\rm{J}/\psi$ production at low transverse momentum in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 064904, 2016.
Inspire Record 1420183 DOI 10.17182/hepdata.73526

We report on the measurement of $\rm{J}/\psi$ production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum $p_{T}$ spectra in p+p for $p_{T}$ < 4 GeV/c and d+Au collisions for $p_{T}$ < 3 GeV/c are presented. These measurements extend the STAR coverage for $\rm{J}/\psi$ production in p+p collisions to low $p_{T}$. The $<p_{T}^{2}>$ from the measured $\rm{J}/\psi$ invariant cross section in p+p and d+Au collisions are evaluated and compared to similar measurements at other collision energies. The nuclear modification factor for $\rm{J}/\psi$ is extracted as a function of $p_{T}$ and collision centrality in d+Au and compared to model calculations using the modified nuclear Parton Distribution Function and a final-state $\rm{J}/\psi$ nuclear absorption cross section.

6 data tables

The mean square of $p_T$.

Nuclear absorption cross section.

The nuclear modicifation factor vs. $p_T$ for $J\psi$ with |y| < 1 in 0-100 percent central d+Au collisions.

More…

Proton-deuterium bremsstrahlung at 200 MeV

Pinston, J.A. ; Barneoud, D. ; Bellini, V. ; et al.
Phys.Lett.B 249 (1990) 402-405, 1990.
Inspire Record 1392683 DOI 10.17182/hepdata.29616

Double differential cross sections for photons above 20 MeV energy were measured for the p+d reaction at 200 MeV. A comparison is made with previous measurements at 140 and 197 MeV. Below 80 MeV photon energy the cross sections and the angular distribution are in reasonable agreement with a recent calculation of the free pnγ elementary process.

2 data tables

No description provided.

No description provided.


Alpha particle emission in the interaction of $^{12}$C with $^{59}$Co and $^{93}$Nb at incident energies of 300 and 400 MeV

Gadioli, E. ; Cavinato, M. ; Fabrici, E. ; et al.
Nucl.Phys.A 654 (1999) 523-540, 1999.
Inspire Record 1389772 DOI 10.17182/hepdata.36165

The results of measured inclusive double differential cross section of α particles emitted in the interaction of 12C ions with 59Co and 93Nb at incident energies of 300 and 400 MeV are presented. The analysis of these data allows us to isolate the contributions of the different reaction mechanisms, thereby confirming previous conclusions of a comprehensive analysis of a large number of excitation function, forward recoil ranges and angular distributions of residues produced in the interaction of 12C with a target nucleus in the same mass range. In particular, the probabilities associated with α-particle reemission following incomplete fussion processes have been reaffirmed. Several refinements to the theoretical model proposed in earlier studies of the interaction of 12C with nuclei are presented.

1 data table

No description provided.


Exclusive and restricted-inclusive reactions involving the $^{11}$Be one-neutron halo

Anne, R. ; Bimbot, R. ; Dogny, S. ; et al.
Nucl.Phys.A 575 (1994) 125-154, 1994.
Inspire Record 1389767 DOI 10.17182/hepdata.36536

Reactions of a 41 MeV/u beam of the radioactive halo nucleus 11Be have been studied with a counter telescope coupled to an array of neutron detectors covering angles up to 97°. The technique allows to determine single-neutron inclusive and exclusive angular distributions. The targets (Be, Ti and Au) were chosen to illustrate the relative roles played by nuclear and Coulomb mechanisms. The channels leading to 10Be, the dissociation channels, correspond to impact parameters larger than the sum of the radii of the target and the 10Be core. It is shown that for the dissociation process it is possible to account almost quantitatively for the integral, single- and double-differential cross sections from models without free parameters including the Coulomb, Serber and Glauber (diffraction-dissociation) mechanisms. The neutron distributions from the nondissociative reaction channels show little individuality and it is convenient to group them together as the channel “neutron plus anything different from 10Be”. We refer to these as “restricted-inclusive” reactions. These seem to be a promising tool for obtaining accurate information on the halo wave function in momentum coordinates.

3 data tables

INTEGRAL SIGMA(BE10) FOLLOWING PROJECTILE BREAKUP.

No description provided.

IN THE REACTION X IS NOT BE10.


High-energy gamma-ray production from 284 MeV $^3$He on nuclei

Pinston, J.A. ; Bellini, V. ; Cassing, W. ; et al.
Nucl.Phys.A 536 (1992) 321-332, 1992.
Inspire Record 1389765 DOI 10.17182/hepdata.36683

Double-differential cross sections for photons above 20 MeV were measured for the 3He+(d, C, Cu and Au) reactions at 284 MeV. The comparison of their energy spectra shows that the high-energy gamma rays are produced by the same mechanism in the very light 3He + d system and in heavier ones like 3He + (C, Cu and Au) or Xe + Sn, previously studied by the MSU group. A calculation of the 3He+(C and Au) systems at 90° in the laboratory was performed, assuming that photons are produced in first-chance nucleon-nucleon collisions and for a realistic momentum distribution of the nucleons in the 3He projectile. The results are in good agreement with the experimental data which suggests that secondary collisions are not important in the production of photons above 50 MeV for nucleus-nucleus reactions at 90 MeV/nucleon.

2 data tables

No description provided.

No description provided.


The 16O(γ, 2N) reaction measured with tagged photons

MacGregor, I.J.D. ; Annand, J.R.M. ; Anthony, I. ; et al.
Nucl.Phys.A 533 (1991) 269-291, 1991.
Inspire Record 1389764 DOI 10.17182/hepdata.36763

The results of tagged photon measurements of the 16O(γ, pn) and 16O(γ, pp) reactions, carried out with photons of energies of 80–131 MeV, are presented. Missing energy spectra for both reactions, with an energy resolution of 7 MeV have been obtained. The 16O(γ, pn) missing energy spectrum is very similar to that recently measured for the 12C(γ, pN) reaction. In both cases the recoil momentum distributions are quantitavely described by a quasideuteron mechanism. Using normalisation factors based on this mechanism the average cross section for the 16O(γ, pn) reaction, for nucleons ejected from the 1p shell, is 510 ± 95 μb. The corresponding cross section for the 16O(γ, pp) reaction is 10.0 ± 3.0 μb.

2 data tables

PROPOSED THAT THE REACTION IS DUE TO A QUASI DEUTERON MECHANISM AND P N PAIRS E]ECT FROM THE 1P SHELL.

PROPOSED THAT THE REACTION IS DUE TO A QUASI DEUTERON MECHANISM AND P N PAIRS E]ECT FROM THE 1P SHELL.


Neutrons from the breakup of $^{19}$C

Marqués, F.M. ; Liegard, E. ; Orr, N.A. ; et al.
Phys.Lett.B 381 (1996) 407-412, 1996.
Inspire Record 1389647 DOI 10.17182/hepdata.55047

Neutrons arising from the breakup of a 30 MeV/nucleon 19 C beam on a tantalum target have been measured using the 98 element array DEMON. A narrow, forward peaked neutron angular distribution, with a corresponding momentum spread considerably smaller than those measured simultaneously for 21 N, 22 O and 24 F, was observed for charged fragments with Z < Z proj . Interpreted in terms of the core-breakup reaction model, the results support the existence of a one neutron halo in 19 C.

2 data tables

No description provided.

No description provided.


Total charge-changing cross sections for neutron-deficient isotopes from $^{58}$Ni fragmentation

Blank, B. ; Andriamonje, S. ; Del Moral, R. ; et al.
Z.Phys.A 352 (1995) 69-75, 1995.
Inspire Record 1389077 DOI 10.17182/hepdata.16503

At the projectile-fragment separator FRS of GSI, relativistic secondary beams of about 520 MeV/nucleon were produced by fragmentation of a primary beam of58Ni at 650 MeV/nucleon in a beryllium target. By means of aΔE—Bρ—TOF measurement, the fragments have been identified and their charge-changing probabilities in targets of CH2, C, Al, and Pb have been determined. We describe the results for the total charge-changing cross sections in this first paper, whereas a second article deals with the partial charge-changing cross sections. At the drip line, the measured charge-changing cross sections exhaust close to 100% of the total interaction cross sections as calculated with semiempirical models. The measurements at the proton drip line with low-Z targets indicate that only a very small increase of the cross sections may be observed, whereas the measurements with a lead target show that no significant increase of the total charge-changing cross sections is present which would be a hint for low-lying dipole strength. Our experimental data are compared to Glauber-type calculations.

24 data tables

Nucleus is C H2.

Nucleus is C H2.

Nucleus is C H2.

More…