The differential asymmetry ratio for the process γ+n→p+π− was measured at 90° in the center-of-mass system and for incident photon energies from 352 to 550 MeV. The observed asymmetries are larger than the values predicted from the theory by Berends, Donnachie, and Weaver. A smaller M1- amplitude gives better agreement between the experiment and the theory.
No description provided.
No description provided.
First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.
No description provided.
No description provided.
We present a measurement of the cross section for hadron production by e+e− annihilation in the vicinity of the previously observed resonance near 3.77 GeV. The data are used to determine the parameters of the ψ(3770) resonance. The values found are: mass, 3764±5 MeV/c2, total width, 23.5±5 MeV, and partial width to electron pairs, 276±50 eV.
PEAK CROSS SECTION FOR D MESON PAIR PRODUCTION AT PSI(3770) RESONANCE. J/PSI, PSI(3684) AND CONTINUUM BACKGROUND (R=2.5) SUBTRACTED.
The differential cross sections at 180° for the reactions γ+p→π++n and γ+n→π−+p were measured using a magnetic spectrometer to detect π± mesons. In order to reduce the spread of energy resolution due to the nucleon motion inside the deuteron, a photon difference method was employed with a 50-MeV step for the reaction γ+n→π−+p. The data show structures at the second- and the third-resonance regions for both reactions. A simple phenomenological analysis was made for fitting the data, and the results are compared with those of previous analyses.
No description provided.
No description provided.
We have measured the fivefold differential cross section d5σ/dΩπdΩγdEγ for the process π+p→π+pγ with incident pions of energy 299 MeV. The angular regions for the outgoing pions (55°≤θlabπ≤95°), and photons (θlabγ=241°±10°) in coplanar geometry are selected to maximize the sensitivity to the radiation from the magnetic dipole moment of the Δ++(1232) resonance. At low photon energies, the data agree with the soft-photon approximation to pion-proton bremsstrahlung. At forward pion angles the data agree with older data and with the latest theoretical calculations for 2.3μp≤μΔ≤3.3μp. However at more backward pion angles where no data existed, the predictions fail.
No description provided.
No description provided.
Measurements of the semileptonic weak-neutral-current reactions νμp→νμp and ν¯μp→ν¯μp are presented. The experiment was performed using a 170-metric-ton high-resolution target detector in the BNL wide-band neutrino beam. High-statistics samples yield the absolute differential cross sections dσ(νμp)/dQ2 and dσ(ν¯μp)/dQ2. A measurement of the axial-vector form factor GA(Q2) is also presented. The results are in good agreement with the standard model SU(2)×U(1). The weak-neutral-current parameter sin2thetaW is determined to be sin2θW=0.220±0.016(stat)−0.031+0.023(syst).
Errors contain both statistics and systematics, except for additional overall normalisation error given above. Neutrino energy is 0 to 5 GeV with peak at 0.8 Gev.
The angular dependence of the asymmetry for negative-pion photoproduction on neutrons by linearly polarized photons has been measured for photon energies 260, 300, 350, 400, 450, and 500 MeV at center-of-mass angles 60°, 75°, 90°, 150°, and 120°. The results are compared with theoretical models of low-energy single-pion photoproduction. The observed asymmetry below 400 MeV shows good agreement with predictions of dispersion-theoretical models by Berends, Donnachie, and Weaver and by Schwela. The asymmetry values in the 400-500 MeV energy region suggest that smaller M1− amplitude is more favorable.
No description provided.
No description provided.
The yields and average transverse momenta of pions, kaons, and antiprotons produced at the Fermilab p¯p collider at s=300, 540, 1000, and 1800 GeV are presented and compared with data from the energies reached at the CERN collider. We also present data on the dependence of average transverse momentum 〈pt〉 and particle ratios as a function of charged particle density dNcdη; data for particle densities as high as six times the average value, corresponding to a Bjorken energy density 6 GeV/fm3, are reported. These data are relevant to the search for quark-gluon phase of QCD.
No description provided.
No description provided.
The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 5/5 contribution (BACKGROUND SUBTRACTION).
Axis error includes +- 5/5 contribution (BACKGROUND SUBTRACTION).
We report a new measurement of the π−p→3π0n total cross section from threshold to pπ=0.75GeV/c. The cross section near the N(1535)12− resonance is only a few μb after subtracting the large η→3π0 background associated with π−p→ηn. A simple analysis of our data results in the estimated branching fraction B[S11→πN(1440)12+]=(8±2)%. This is the first such estimate obtained with a three-pion production reaction.
Total cross section from threshold to 750 MeV. Only statistical errors are given in the table.