Inclusive jet and dijet cross sections have been measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector at the Large Hadron Collider. The cross sections were measured using jets clustered with the anti-kT algorithm with parameters R=0.4 and R=0.6. These measurements are based on the 2010 data sample, consisting of a total integrated luminosity of 37 inverse picobarns. Inclusive jet double-differential cross sections are presented as a function of jet transverse momentum, in bins of jet rapidity. Dijet double-differential cross sections are studied as a function of the dijet invariant mass, in bins of half the rapidity separation of the two leading jets. The measurements are performed in the jet rapidity range |y|<4.4, covering jet transverse momenta from 20 GeV to 1.5 TeV and dijet invariant masses from 70 GeV to 5 TeV. The data are compared to expectations based on next-to-leading order QCD calculations corrected for non-perturbative effects, as well as to next-to-leading order Monte Carlo predictions. In addition to a test of the theory in a new kinematic regime, the data also provide sensitivity to parton distribution functions in a region where they are currently not well-constrained.
Inclusive jet PT distribution for the |y| range 0.0-0.3 and R=0.4.
Inclusive jet PT distribution for the |y| range 0.3-0.8 and R=0.4.
Inclusive jet PT distribution for the |y| range 0.8-1.2 and R=0.4.
Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.
Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
The inclusive dijet production double differential cross section as a function of the dijet invariant mass and of the largest absolute rapidity of the two jets with the largest transverse momentum in an event is measured in proton anti-proton collisions at sqrt{s} = 1.96 TeV using 0.7 fb^{-1} integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The measurement is performed in six rapidity regions up to a maximum rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found to be in agreement with the data.
Dijet double differential cross section for the absolute rapidity region 0.0 to 0.4.
Dijet double differential cross section for the absolute rapidity region 0.4 to 0.8.
Dijet double differential cross section for the absolute rapidity region 0.8 to 1.2.
Momentum spectra of charged pions over nearly full rapidity coverage from target to beam rapidity have been measured in the 0-5% most central Au+Au collisions in the beam energy range from 2 to 8 AGeV by the E895 Experiment. Using a thermal parameterization to fit the transverse mass spectra, rapidity density distributions are extracted. The observed spectra are compared with predictions from the RQMD v2.3 cascade model and also to a thermal model including longitudinal flow. The total 4$\pi$ yields of the charged pions are used to infer an initial state entropy produced in the collisions.
No description provided.
No description provided.
No description provided.
Rapidity distributions of protons from central $^{197}$Au + $^{197}$Au collisions measured by the E895 Collaboration in the energy range from 2 to 8 AGeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model including collective longitudinal expansion are extracted from these distributions. The results show an approximately linear increase in the longitudinal flow velocity, $<\beta\gamma>_{L}$, as a function of the logarithm of beam energy.
No description provided.
No description provided.
No description provided.
We report final results of a series of measurements of continuum dimuon production in proton-nucleus collisions at Fermilab. New results with 6 times more statistics are included. A full description of the apparatus and methods used in the analysis of this series of measurements is given. The sea quark distribution of the nucleon is determined within the context of Drell-Yan and quantum-chromodynamic description of dilepton production in hadron collisions.
No description provided.
No description provided.
No description provided.
We present proton-nucleus dimuon-production cross sections for masses between 4 and 15 GeV, center-of-mass rapidities between -0.23 and 0.6 and incident energies of 200, 300, and 400 GeV. The data confirm scaling to the 20% level. The dependence of continuum 〈pT〉 on beam energy is also presented.
No description provided.
No description provided.
No description provided.