The total and differential cross-sections for the reaction e + e − → γγ ( γ ) are measured at centre of mass energies around 91 GeV using an integrated luminosity of 4.7 pb −1 . The aggreement with QED prediction is good. Consequently there is no evidence for non-standard channels which would have the same experimental signature. The lower limits on the QED cuttoff parameters are Λ + > 113 GeV and Λ − > 95 GeV. An upper limit on the effective coupling between a possible excited electron and the gamma is derived. At 95% confidence level the branching ratios for Z 0 decay into π 0 γ, ηψ and γγγ are below 1.5 × 10 −4 , 2.8 × 10 −4 and 1.4 × 10 −4 respectively.
Radiative effects are subtracted.
Radiative effects subtracted.
None
No description provided.
No description provided.
No description provided.
Differential cross sections for the emission of intermediate-mass fragments (3≤Zf≤14) at 48.5° and 131.5° in the interaction of xenon with 1–19 GeV protons have been measured. The excitation functions rise sharply with energy up to ∼10 GeV and then level off. The energy spectra were fitted with an expression based on the phase transition droplet model. Excellent fits with reasonable parameters were obtained for Ep≥9 GeV. Below 6 GeV, the fits show an increasing contribution with decreasing energy from another mechanism, believed to be binary breakup. A droplet model fit to the cross sections ascribed to the multifragmentation component is able to reproduce the variation of the yields with both fragment mass and proton energy. The results are interpreted in terms of the phase diagram of nuclear matter.
No description provided.
No description provided.
No description provided.
Measurements have been made of the differential cross section and asymmetry A on for p p elastic scattering at 15 incident momenta between 497 MeV/ c and 1550 MeV/ c . The angular range where both particles have enough energy to traverse target and setup has been covered. The results are compared with predictions of various N N potential models. None of these models fully explains the present results, although the general trend of the data is predicted correctly.
No description provided.
No description provided.
No description provided.
None
No description provided.
In an inclusive experiment, isotopically resolved fragments, 3≤Z≤13, produced in high-energy proton-nucleus collisions have been studied using a low mass time-of-flight, gas ΔE-silicon E spectrometer and an internal gas jet. Measurement of the kinetic energy spectra from 5 to 100 MeV enabled an accurate determination of fragment cross sections from both xenon and krypton targets. Fragment spectra showed no significant dependence on beam energy for protons between 80 and 350 GeV/c. The observed isobaric yield is given by YαAf−τ, where τ∼2.6 for both targets; this also holds for correlated fragment data. The power law is the signature for the fragment formation mechanism. We treat the formation of fragments as a liquid-gas transition at the critical point. The critical temperature Tc can be determined from the fragment isotopic yields, provided one can set an energy scale for the fragment free energy. The high energy tails of the kinetic energy spectra provide evidence that the fragments originate from a common remnant system somewhat lighter than the target which disassembles simultaneously via Coulomb repulsion into a multibody final state. Fragment Coulomb energies are about 110 of the tangent sphere values. The remnant is characterized by a parameter T, obtained from the high energy tails of the kinetic energy distributions. T is interpreted as reflecting the Fermi momentum of a nucleon in this system. Since T≫Tc, and T is approximately that value expected for a cold nucleus, we conclude that the kinetic energy spectra are dominated by this nonthermal contribution. [NUCLEAR REACTIONS Xe(p,X), Kr(p,X), 80≤Eq≤350 GeV; measured σ(E,θ), X=Li to Al, θ=34∘. Fragmentation.]
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
We present differential cross-sections for pp elastic scattering at eight laboratory momenta from 1.50 to 2.06 GeV/c. The data are analysed using an 8-parameter optical modelà la Frahn and Venter. However, the best representation of the differential cross-sections is obtained by combining the glory model with a parametrization of the scattering amplitude in terms of coherent exponentials. Both representations show the dominance of the partial wave with orbital angular momentum equal to four.
No description provided.
The experimental data on d-d collisions at 4.3, 6.3 and 8.9 GeV/ c , exhibiting the two-peak structure in the high-momentum parts of the secondary deuteron spectra at momentum transfers | t | ≈ 0.4–0.8 (GeV/ c ) 2 , are presented. An analysis of the results in terms of the multiple nucleon-nucleon scattering model is given. Some conclusions about the mechanism of the elastic and quasielastic d-d scattering at the above-mentioned momentum transfers are made.
No description provided.
No description provided.
No description provided.