Search for Charged-Lepton Flavor Violation in the Production and Decay of Top Quarks using Trilepton Final States in Proton-Proton Collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-TOP-22-005, 2023.
Inspire Record 2731662 DOI 10.17182/hepdata.135831

A search is performed for charged-lepton flavor violating processes in top quark (t) production and decay. The data were collected by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 138 fb$^{-1}$. The selected events are required to contain one opposite-sign electron-muon pair, a third charged lepton (electron or muon), and at least one jet of which no more than one is associated with a bottom quark. Boosted decision trees are used to distinguish signal from background, exploiting differences in the kinematics of the final states particles. The data are consistent with the standard model expectation. Upper limits at 95% confidence level are placed in the context of effective field theory on the Wilson coefficients, which range between 0.024-0.424 TeV$^{-2}$ depending on the flavor of the associated light quark and the Lorentz structure of the interaction. These limits are converted to upper limits on branching fractions involving up (charm) quarks, t$\to$e$\mu$u (t$\to$e$\mu$c), of 0.032 (0.498)$\times$10$^{-6}$, 0.022 (0.369)$\times$10$^{-6}$, and 0.012 (0.216)$\times$10$^{-6}$ for tensor-like, vector-like, and scalar-like interactions, respectively.

2 data tables

The expected and observed upper limits on CLFV Wilson coefficients. The Limits on the Wilson coefficients are extracted from the upper limits on the cross sections.

The expected and observed upper limits on top quark CLFV branching fractions. The Limits on the top quark CLFV branching fractions are extracted from the upper limits on the Wilson coefficients.


Version 2
Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 765, 2017.
Inspire Record 1609448 DOI 10.17182/hepdata.78366

Observables sensitive to the anomalous production of events containing hadronic jets and missing momentum in the plane transverse to the proton beams at the Large Hadron Collider are presented. The observables are defined as a ratio of cross sections, for events containing jets and large missing transverse momentum to events containing jets and a pair of charged leptons from the decay of a $Z/\gamma^\ast$ boson. This definition minimises experimental and theoretical systematic uncertainties in the measurements. This ratio is measured differentially with respect to a number of kinematic properties of the hadronic system in two phase-space regions; one inclusive single-jet region and one region sensitive to vector-boson-fusion topologies. The data are found to be in agreement with the Standard Model predictions and used to constrain a variety of theoretical models for dark-matter production, including simplified models, effective field theory models, and invisible decays of the Higgs boson. The measurements use 3.2 fb$^{-1}$ of proton--proton collision data recorded by the ATLAS experiment at a centre-of-mass energy of 13 TeV and are fully corrected for detector effects, meaning that the data can be used to constrain new-physics models beyond those shown in this paper.

14 data tables

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the $\geq 1$ jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the $\geq 1$ jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

Measured and expected $R^\text{miss}$ as a function of $p_\text{T}^\text{miss}$ in the VBF jet phase space. The fiducial SM predictions for the numerator and the denominator are also given.

More…

Version 2
Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 112003, 2018.
Inspire Record 1663958 DOI 10.17182/hepdata.85696

Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at $\sqrt{s} =$ 13 TeV are measured as a function of kinematic variables of the top quarks and the top quark-antiquark ($\mathrm{t}\overline{\mathrm{t}}$) system. In addition, kinematic variables and multiplicities of jets associated with the $\mathrm{t}\overline{\mathrm{t}}$ production are measured. This analysis is based on data collected by the CMS experiment at the LHC in 2016 corresponding to an integrated luminosity of 35.8 fb$^{-1}$. The measurements are performed in the lepton+jets decay channels with a single muon or electron and jets in the final state. The differential cross sections are presented at the particle level, within a phase space close to the experimental acceptance, and at the parton level in the full phase space. The results are compared to several standard model predictions that use different methods and approximations. The kinematic variables of the top quarks and the $\mathrm{t}\overline{\mathrm{t}}$ system are reasonably described in general, though none predict all the measured distributions. In particular, the transverse momentum distribution of the top quarks is more steeply falling than predicted. The kinematic distributions and multiplicities of jets are adequately modeled by certain combinations of next-to-leading-order calculations and parton shower models.

478 data tables

Absolute cross section at particle level as a function of $p_\text{T}(\text{t}_\text{h})$.

Absolute cross section at particle level as a function of $p_\text{T}(\text{t}_\text{h})$.

Covariance matrix of absolute cross section at particle level as a function of $p_\text{T}(\text{t}_\text{h})$.

More…

Atomic mass dependence of D+- and D0, anti-D0 production in 250-GeV pi+- nucleon interactions

The Fermilab E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.Lett. 70 (1993) 722-725, 1993.
Inspire Record 341731 DOI 10.17182/hepdata.19741

We measure the relative cross sections for D mesons produced in interactions of π− and π+ beams with targets of Be, Cu, Al, and W. The measurement is based on 1400 fully reconstructed decays of the types D0→K−π+, D+→K−π+π+, and charge conjugates. We find that the cross section for the production of both neutral and charged D’s by either π− or π+ is well fitted by the form Aα where A is the atomic mass and α=1.00±0.05±0.02, where the errors are statistical and systematic, respectively. There is no significant dependence of α on the transverse or longitudinal momentum of the D meson or on the charge of either the incident pion or the produced D mesons.

1 data table

No description provided.


Feynman-x and transverse momentum dependence of D meson production in 250-GeV pi, K and p nucleon interactions.

The E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.Lett. 77 (1996) 2392-2395, 1996.
Inspire Record 418093 DOI 10.17182/hepdata.42291

We measure the differential cross sections with respect to Feynman x ( xF) and transverse momentum ( pT) for π, K, and p-induced charm meson production using fully reconstructed D+, D0, and Ds decays. The shapes of these cross sections are compared to the theoretical predictions for charm quark production of next-to-leading order perturbative QCD using modern parametrizations of the pion and nucleon parton distributions. We observe the differences expected in production induced by projectiles with different gluon distributions, harder distributions being indicated for mesons than for protons.

5 data tables

Additional systematic errors of 6 pct, 6 pct and 9 pct respectively for pi, K and p beams.

Additional systematic errors of 6 pct, 6 pct and 9 pct respectively for pi, K and p beams.

Result of fitting DSIG/dXL spectra with form (1-XL)**POWER.

More…

Forward cross-sections for production of D+, D0, D/s, D*+ and Lambda/c in 250-GeV pi+-, K+-, and p nucleon interactions.

The E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.Lett. 77 (1996) 2388-2391, 1996.
Inspire Record 418771 DOI 10.17182/hepdata.42294

We measure forward cross sections for production of D+, D0, Ds, D*+, and Λc in collisions of π±, K±, and p on a nuclear target. Production induced by different beam particles is found to be the same within statistics. Strange and baryonic final states are seen to contribute appreciably to the total charm cross section, which our measurements indicate is larger than but consistent with QCD predictions. The energy dependence mapped out by these and previous measurements is consistent with theory. Leading-particle asymmetry measurements for K and p-induced charm production are also presented.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Enhanced leading production of D+- and D*+- in 250-GeV pi+- - nucleon interactions

The E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.Lett. 72 (1994) 812-815, 1994.
Inspire Record 361344 DOI 10.17182/hepdata.42499

A leading charm meson is one with longitudinal momentum fraction, xF>0, whose light quark (or antiquark) is of the same type as one of the quarks in the beam particles. We report on the production asymmetry, A=[σ(leading-σ(nonleading)]/[σ(leading)+σ(nonleading)] as a function of xF. The data consist of 1500 fully reconstructed D± and D*± decays in Fermilab experiment E 769. We find a significant asymmetry for the production of charm quarks is not expected in perturbative quantum chromodynamics.

2 data tables

Asymmetry as function of XL.

Asymmetry as function of PT**2.


D*+- production in 250-GeV pi+- N interactions

The E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.D 49 (1994) R4317-R4320, 1994.
Inspire Record 354345 DOI 10.17182/hepdata.42544

We report results from Fermilab experiment E769 on the differential cross sections of D*± charm vector mesons with respect to Feynman-x (xF) and transverse momentum (PT), and on the atomic mass dependence of the production. The D* mesons were produced by a 250 GeV π beam on a target of Be, Al, Cu, and W foils. The dσdxF distribution is fit by the form ((1−xF)n) with n=3.5±0.3±0.1, the dσdPT2 distribution by exp(−b×PT2) with b=0.70±0.07±0.04 GeV−2, and the cross section A dependence by Aα with α=1.00±0.07±0.02. These results are compared to the equivalent parameters for the production of pseudoscalar D0 and D± charm mesons.

5 data tables

Data are in arbitrary units and are the weighted averages bin-by-bin for the 3 D0 modes KPI, K3PI and KPIPI0.

Data are in arbitrary units and are the weighted averages bin-by-bin for the 3 modes KPI, K3PI and KPIPI0.

Results of fit to DSIG/DXL distribution of the form (1-XL)**POWER in the XL range 0.1 to 0.6.

More…

Beam flavor dependence in the hadroproduction of D+- and D(s)+- mesons

The E769 collaboration Wallace, A. ; Alves, G.A. ; Amato, S. ; et al.
FERMILAB-CONF-94-184-E, 1994.
Inspire Record 375038 DOI 10.17182/hepdata.43049

None

10 data tables

No description provided.

No description provided.

No description provided.

More…

Feynman-x and Transverse Momentum Dependence on $D^{\pm}$ and $D^0$, $\bar{D}^0$ Production in 250 GeV $\pi^-$ Nucleon Interactions

The Fermilab E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.Lett. 69 (1992) 3147-3150, 1992.
Inspire Record 338063 DOI 10.17182/hepdata.19804

We measure the differential cross section with respect to Feynman-x (xF) and transverse momentum (PT) for charm meson production using targets of Be, Al, Cu, and W. In the range 0.1<xF<0.7, dσ/dxF is well fit by the form (1-xF)n with n=3.9±0.3. The difference between n values for D− and D+ is 1.1±0.7. However, we find an asymmetry of 0.18±0.06 favoring the production of D− compared to D+. In the lower PT range, <2 GeV, dσ/dPT2 is well fit by the form exp(-b×PT2) with b=1.03±0.06 GeV−2, while in the higher PT range, 0.8 to 3.6 GeV, it is well fit by the form exp(-b’×PT) with b’=2.76±0.08 GeV−1. The shape of the differential cross section has no significant dependence on atomic mass of the target material.

4 data tables

No description provided.

Results of fit to DSIG/DXL distribution of the form (1-XL)**POWER in the XL range 0.1 to 0.7. Statistical errors only. Systematic errors are small in comparison.

Results of fit to DSIG/DPT**2 distribution of the form exp(-POWER*PT**2) in the PT**2 range 0.0 to 4.0 GeV**2.

More…