Electroproduction of the omega meson was investigated in the p(e,e'p)omega reaction. The measurement was performed at a 4-momentum transfer Q2 ~ 0.5 GeV2. Angular distributions of the virtual photon-proton center-of-momentum cross sections have been extracted over the full angular range. These distributions exhibit a strong enhancement over t-channel parity exchange processes in the backward direction. According to a newly developed electroproduction model, this enhancement provides significant evidence of resonance formation in the gamma* p -> omega p reaction channel.
Differential cross section for an average W of 1.75 GeV.
Differential cross section for an average W of 1.79 GeV.
A facility for detection of scattered neutrons in the energy interval 50–130MeV, SCANDAL, has recently been installed at the 20–180MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from C12 and Pb208 has been studied at 96MeV in the 10°–70° interval. The achieved energy resolution, 3.7MeV, is about an order of magnitude better than for any previous experiment above 65MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions based on phenomenology or microscopic nuclear theory.
Measured differential cross section for elastic scattering on PB208. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.
Measured differential cross section for elastic scattering on C12. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.
The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.
No description provided.
No description provided.
No description provided.
The pure QED reaction e + e − → γγ has been studied at centre of mass energies around the mass of the Z 0 boson using data recorded by the OPAL detector at LEP. The results are in good agreement with the QED prediction. Lower limits on the cutoff parameters of the modified electron propagator are found to be Λ + >89 GeV and Λ. The lower limit on the mass of an excited electron is 82 GeV assuming the coupling constant λ =1. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ are set at 3.7×10 −4 , 3.9×10 −4 and 5.8×10 −4 respectively. Two events from the reaction e + e − → γγγ have been observed, consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ is set at 2.8×10 −4 . All the limits are given at 95% confidence level.
No description provided.
Data read from graph.
We present results on charged multiplicity nch=2 and nch>2 muon events produced in e+e− collisions with 〈s12〉=7.3 GeV at 90° to the beams. The background-subtracted inclusive cross section for the nch=2 events is 10.2±5.4 pb/sr, in agreement with the expected contribution from the heavy lepton τ. The cross section for the nch>2 events is 19.0±6.5 pb/sr whereas we expect only 2.9 pb/sr from the τ, indicating that we may be seeing the weak decays of charmed mesons.
No description provided.
No description provided.
Measurements of the differential cross sections for π−d elastic scattering in the backward angular region are presented. These measurements were made at thirteen incident-pion momenta ranging from 496 to 1050 MeV/c, over the center-of-mass angular range 148° to 177°. The experiment was performed at the LBL Bevatron. Experimental apparatus consisted of a liquid deuterium target and a double-arm spectrometer which included scintillation-counter hodoscopes. Center-of-mass differential cross sections were found to be generally smooth over the angular range covered and can be fitted with low-order polynomials. The extrapolated differential cross sections at 180° scattering angle were found to decrease rapidly with increasing momentum, with a prominent peak near 700 MeV/c and a shoulder near 900 MeV/c. These data are discussed in terms of existing models employing "d*" structures, and are compared with other similar measurements.
.
.
.
Differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center-of-mass system have been measured at 33 incident pion momenta in the range 600 to 1280 MeV/c. The experiment, which was performed at the Bevatron at the Lawrence Berkeley Laboratory, employed a liquid hydrogen target, a double-arm spectrometer, and standard counter techniques to detect the elastic events. The data from this experiment are compared to all other published data in this momentum region. The over-all agreement is good. The data of this experiment are also compared with the results of the recent phase-shift analysis by Almehed and Lovelace. In the momentum region between 700 and 900 MeV/c, the slope of the backward angular distribution goes rapidly through zero from negative to positive, and the magnitude of the differential cross section falls by more than a factor of 10. Momentum-dependent structure is seen in the extrapolated differential cross sections at 180°. Two prominent dips in the 180° differential cross sections appear at 880 and 1150 MeV/c. This structure is discussed in terms of a direct-channel resonance model that assumes only resonant partial waves are contributing to the cross sections for large scattering angles.
No description provided.
No description provided.
No description provided.
The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.
No description provided.
No description provided.
No description provided.
The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c
INTERPOLATED DATA.
INTERPOLATED DATA.
INTERPOLATED DATA.
We have measured the antiproton-proton elastic differential cross section in the center-of-mass angular range cosθ=−0.985 to +0.40 at six momenta between 1.6 and 2.2 GeV/c in a bubble-chamber experiment. We use the data to look for evidence of direct-channel boson resonances.
No description provided.