The production ofK0, Λ and\(\bar \Lambda \) particles is studied in the E665 muon-nucleon experiment at Fermilab. The average multiplicities and squared transverse momenta are measured as a function ofxF andW2. Most features of the data can be well described by the Lund model. Within this model, the data on the K0/π± ratios and on the averageK0 multiplicity in the forward region favor a strangeness suppression factors/u in the fragmentation process near 0.20. Clear evidence for QCD effects is seen in the average squared transverse momentum ofK0 and Λ particles.
No description provided.
No description provided.
No description provided.
We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.
The cross section per nucleon.
The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(PT**2)= CONST*EXP(SLOPE*PT), D(SIG)/D(XL) = CONST*(1-(XL-CONST(C=X0))**2)**POWER(C=1) , and D(SIG)/D(XL) = CONST*(1-ABS(XL-CONST(C=XC)))**POWER(C=2).
The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(COS(THETA)) = CONST*(1+CONST*COS(THETA)**2), where THETA is the angle between the MU+ and beam momentum in the CHI/C rest frame.
Longitudinal and transverse momentum spectra of final state hadrons produced in deep-inelastic muon-deuterium scattering at incident muon energy of 490 GeV have been measured up to a hadronic center of mass energy of 30 GeV. The longitudinal distributions agree well with data from earlier muon-nucleon scattering experiments; these distributions tend to increase in steepness as the center of mass energy increases. Comparisons with e + e − data at comparable center of mass energies indicate slight differences. The transverse momentum distributions show an increase in mean p T 2 with an increase in the center of mass energy.
No description provided.
No description provided.
No description provided.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
SYSTEMATIC CORRECTIONS INCLUDED IN ERRORS.
FROM FIT, FORWARD D(SIG)/DT = 31.84 +- 0.68 MB/GEV**2, AND AGREES WITH OPTICAL POINT FROM MEASURED TOTAL CROSS SECTIONS.
The reactions of positive pions with protons yielding four charged particles and one or more neutrals have been studied, especially the reaction π+p→Δ++ω0→pπ+π+π−π0. The results presented in this paper were obtained from a 100 000-picture exposure of the Argonne-MURA 30-in. liquid hydrogen bubble chamber, with a beam of incident pions of 4.09−GeVc momentum. Comparisons have been made with corresponding results of other experiments at various incident beam momenta, and with the predictions of some theoretical models of the π+p interaction.
INCLUDING CORRECTIONS FOR BACKGROUND.
No description provided.
No description provided.
We have measured ρ0, ω (combined) and ϕ electroproduction over a range of virtual-photon four-momentum Q2 from 0.4 to 2.2 GeV2 and for photon energies ν from 2.7 to 8.6 GeV. We find that the slope of the t (momentum transfer) dependence of the ρ0 and ω forward peak decreases with increasing Q2 to less than half of the photoproduction slope.
The cross section for virtual photon are derived from E- P cross section bydividing on the virtual-photon flux factor.