Date

Subject_areas

Version 2
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\sqrt{s}=8$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 112, 2014.
Inspire Record 1306615 DOI 10.17182/hepdata.65179

Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The analysis is performed in the $H \rightarrow \gamma\gamma$ decay channel using 20.3 fb$^{-1}$ of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The $pp\rightarrow H \rightarrow \gamma\gamma$ fiducial cross section is measured to be $43.2 \pm 9.4 (stat) {}^{+3.2}_{-2.9} (syst) \pm 1.2 (lumi)$ fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.

29 data tables

Measured differential cross section with associated uncertainties as a function of transverse momentum of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of absolute rapidity of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of multiplicity of jets with transverse momentum pT(jet) > 30 GeV. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Study of Hadronic Event-Shape Variables in Multijet Final States in pp Collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2014) 087, 2014.
Inspire Record 1305624 DOI 10.17182/hepdata.66571

Event-shape variables, which are sensitive to perturbative and nonperturbative aspects of quantum chromodynamic (QCD) interactions, are studied in multijet events recorded in proton-proton collisions at sqrt(s) = 7 TeV. Events are selected with at least one jet with transverse momentum pt > 110 GeV and pseudorapidity abs(eta) < 2.4, in a data sample corresponding to integrated luminosities of up to 5 inverse femtobarns. The distributions of five event-shape variables in various leading jet pt ranges are compared to predictions from different QCD Monte Carlo event generators.

25 data tables

Transverse thrust for $110 < p_{T,1} < 170$ GeV.

Transverse thrust for $170 < p_{T,1} < 250$ GeV.

Transverse thrust for $250 < p_{T,1} < 320$ GeV.

More…

Studies of QCD at e+ e- centre-of-mass energies between 91-GeV and 209-GeV.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 35 (2004) 457-486, 2004.
Inspire Record 636645 DOI 10.17182/hepdata.12794

The hadronic final states observed with the ALEPH detector at LEP in ${\rm e}^ + {\rm e}^-$ annihilation

234 data tables

Mean charged particle multiplicities at different c.m. energies.

XP distribution at c.m. energy 133.0 GeV.

XP distribution at c.m. energy 161.0 GeV.

More…

Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

33 data tables

The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.

The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.

Energy Energy Correlation EEC.

More…

Studies of QCD in e+ e- --> hadrons at E(cm) = 130-GeV and 136-GeV.

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Z.Phys.C 73 (1997) 409-420, 1997.
Inspire Record 421546 DOI 10.17182/hepdata.47802

None

8 data tables

Inclusive charged particle distribution as a function of XP.

Inclusive charged particle distribution as a function of rapidity (YRAP).

Inclusive charged particle distribution as a function of PT in the event plane.

More…

A Global determination of alpha-s (M(z0)) at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 55 (1992) 1-24, 1992.
Inspire Record 333079 DOI 10.17182/hepdata.14606

The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d

16 data tables

Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.

Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

More…

A Search for the Top and $b^\prime$ Quarks in Hadronic $\Z^0$ Decays

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 236 (1990) 364-374, 1990.
Inspire Record 283784 DOI 10.17182/hepdata.29702

We report on a search for new quarks in hadronic Z° decays. From the event shape analysis of a data sample containing 2185 multihadronic annihilation events, we observe no evidence for the top or b' quarks. We derive limits for the top and b' quark masses under the assumption of various possible standard model and non-standard model decay schemes. Our search is sensitive to quark masses larger than 23 GeV/ c 2 ; it yields the following lower limits at a 95% confidence level: 44.5 GeV/ c 2 for the top quark mass and 45.2 GeV/ c 2 for the b′ quark mass.

1 data table

Measured event shape distributions - uncorrected.


Search for Top Quark and a Test of Models Without Top Quark at the Highest {PETRA} Energies

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 50 (1983) 799, 1983.
Inspire Record 182337 DOI 10.17182/hepdata.20549

With a PETRA energy scan in ≤30-MeV steps, the continuum production of open top quark up to 38.54 GeV is excluded. Over regions of energy scan from 29.90 to 38.63 GeV limits are set on the product of hadronic branching ratio and electronic width BhΓee for toponium to be less than 2.0 keV at the 95% confidence level. By a search for flavor-changing neutral currents in b decay, models without a top quark are excluded.

4 data tables

MEASUREMENT OF R IN ENERGY SCAN FROM SQRT(S) = 29.9 TO 3.146 AND 33.0 TO 36.72.

MEASUREMENT OF R IN THE RANGE SQRT(S) 37 TO 38.63 GEV.

THRUST DISTRIBUTION FOR EVENTS IN THE RANGE SQRT(S) 37.94 TO 38.63 AND 38.54 TO 38.63.

More…