Incident alphas on protons were used to measure the elastic cross section in the backward hemisphere at 3.20, 4.00, 5.08 and 6.00 GeV/ c . The level and shape of the angular distributions are strongly dependent on energy. A backward peak shows up at 4.00 GeV/ c and become much steeper when the energy increases.
X ERROR H = 0.50 G/CM**2. X ERROR D(THETA) = 0.8800 DEG.
X ERROR H = 0.50 G/CM**2. X ERROR D(THETA) = 0.4400 DEG.
X ERROR H = 0.50 G/CM**2. X ERROR D(THETA) = 0.8800 DEG.
The angular distribution of the inclusive reaction 4 He + p → 3 He + X was measured with 6.85 GeV/ c incident alphas. At large angles, the observed kinematics corresponds to the elastic scattering on the target proton of an 3 He present in the incoming 4 He, the remaining neutron being a spectator. This shows the presence of an important component of 3 He in 4 He. The integrated cross section for 3 He production is σ 3He = 24.1 ± 1.9 mb.
No description provided.
We present data on the five final states Λω, Λφ, Λϱ 0 , Σ 0 ⊘ and Σ 0 ϱ 0 produced in 3.1–3.6 GeV/ c K − p interactions. These data are from a bubble chamber experiment with 18 events/μb. For all reactions the data consist of the overall and differetial cross sections, and the hyperon polarisation and the vector meson's density matrix elements as a function of momentum transfer. For Λω and Λ⊘, an almost complete amplitude analysis is performed in several regions of momentum transfer. The data are examined from the point of view of various exchange models.
CORRECTED FOR UNSEEN DECAY MODES OF LAMBDA, OMEGA AND PHI.
No description provided.
NO BACKWARD PHI PRODUCTION.
The α-proton elastic scattering has been measured with α particles at equivalent incident proton energies of 438, 648, and 1036 MeV. A structure is observed at the position where a second minimum is expected in the differential cross section. Comparison with improved versions of the Glauber model are presented.
X ERROR D(THETA) = 0.4400 DEG.
X ERROR D(THETA) = 0.2200 DEG.
X ERROR D(THETA) = 0.4400 DEG.
This paper reports a search for Higgs boson pair ($hh$) production in association with a vector boson ($W$ or $Z$) using 139 $fb^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($W\to\ell\nu, Z\to\ell\ell,\nu\nu$ with $\ell=e, \mu$) and the Higgs bosons each decay into a pair of $b$-quarks. It targets $Vhh$ signals from both non-resonant $hh$ production, present in the Standard Model (SM), and resonant $hh$ production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonant $Vhh$ production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonance $H$, in the mass range 260-1000 GeV, that decays into $hh$, and the other is the production of a heavier neutral pseudoscalar resonance $A$ that decays into a $Z$ boson and $H$ boson, where the $A$ boson mass is 360-800 GeV and the $H$ boson mass is 260-400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to neutrinos.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a W boson decaying to a charged lepton and a neutrino.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to charged leptons.
This paper presents a search for dark matter, $\chi$, using events with a single top quark and an energetic $W$ boson. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s}=$ 13 TeV during LHC Run 2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. The search considers final states with zero or one charged lepton (electron or muon), at least one $b$-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state, $H^{\pm}$, arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle, $a$: $H^{\pm} \rightarrow W^\pm a (\rightarrow \chi\chi)$. Signal models with $H^{\pm}$ masses up to 1.5 TeV and $a$ masses up to 350 GeV are excluded assuming a tan$\beta$ value of 1. For masses of $a$ of 150 (250) GeV, tan$\beta$ values up to 2 are excluded for $H^{\pm}$ masses between 200 (400) GeV and 1.5 TeV. Signals with tan$\beta$ values between 20 and 30 are excluded for $H^{\pm}$ masses between 500 and 800 GeV.
The observed exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.
The expected exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.
The observed exclusion contour at 95% CL as a function of the $m_{H^{\pm}}$ vs. tan$\beta$ and assuming $m_a$ = 150 $\mathrm{GeV}$, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.
This paper presents a study of $Z \to ll\gamma~$decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton-proton data sample corresponding to an integrated luminosity of 20.2 fb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}$ = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $Z \to ll\gamma\gamma$ decays are also reported.
Unfolded $M(l^{+}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63717.4 $\pm$ 252.4, NPowHeg truth =338714.
Unfolded $M(l^{-}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63855.8 $\pm$ 252.7 , NPowHeg truth =338708.
Unfolded $M(l^{+}\gamma)$ distribution for $Z \to \mu\mu\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 64809.8 $\pm$ 254.6, NPowHeg truth =634285.
A search for the production of top-quark pairs with the same electric charge ($tt$ or $\bar{t}\bar{t}$) is presented. The analysis uses proton-proton collision data at $\sqrt{s}=13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events with two same-charge leptons and at least two $b$-tagged jets are selected. Neural networks are employed to define two selections sensitive to additional couplings beyond the Standard Model that would enhance the production rate of same-sign top-quark pairs. No significant signal is observed, leading to an upper limit on the total production cross-section of same-sign top-quark pairs of 1.6 fb at 95$\%$ confidence level. Corresponding limits on the three Wilson coefficients associated with the ${\cal O}_{tu}^{(1)}$, ${\cal O}_{Qu}^{(1)}$, and ${\cal O}_{Qu}^{(8)}$ operators in the Standard Model Effective Field Theory framework are derived.
Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.
Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu --}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.
Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{cQu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.
This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a $W$ boson and a $125$ GeV Higgs boson $h$. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb$^{-1}$. The search is conducted by examining the reconstructed invariant mass distribution of the $Wh$ candidates for evidence of a localised excess in the charged Higgs boson mass range from $250$ GeV to $3$ TeV. No significant excess is observed and 95% confidence-level upper limits between $2.8$ pb and $1.2$ fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into $Wh$.
Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the resolved analysis.
Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the merged analysis.
Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved qqbb low-purity signal region.
A search for exotic decays of the 125 GeV Higgs boson into a pair of new spin-0 particles, $H \to aa$, where one decays into a photon pair and the other into a $\tau$-lepton pair, is presented. Hadronic decays of the $\tau$-leptons are considered and reconstructed using a dedicated tagger for collimated $\tau$-lepton pairs. The search uses 140 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider. The search is performed in the mass range of the $a$ boson between 10 GeV and 60 GeV. No significant excess of events is observed above the Standard Model background expectation. Model-independent upper limits at 95$\% $ confidence level are set on the branching ratio of the Higgs boson to the $\gamma\gamma\tau\tau$ final state, $\mathcal{B}(H\to aa\to \gamma\gamma\tau\tau)$, ranging from 0.2$\% $ to 2$\% $, depending on the $a$-boson mass hypothesis.
Distribution of the diphoton invariant mass for all events satisfying the analysis selections in the full Run 2 dataset.
Scan of the observed $p$-value as a function of $m_{a}$ for the background-only hypothesis.
The observed and expected ($\pm1\sigma$) upper limits at 95% CL on the branching ratio for $H\rightarrow aa\rightarrow \gamma\gamma\tau\tau$ as a function of the resonance mass hypothesis $m_{a}$.