A search for the production of charmed particles in 15-BeV/c π+p interactions has been carried out. The search was sensitive to charmed particles in the 1.5 to 4.0 BeV mass range, with lifetimes ≲10−11 sec, decaying into a strange particle with up to eight additional pions. No evidence for the production of such particles was found.
No description provided.
We report new measurements of the inclusive electroproduction of forward protons carried out at the Wilson Synchrotron Laboratory at Cornell University. Data were taken with deuterium at the (W, Q2) points (2.15 GeV, 1.2 GeV2), (2.15, 4.0), and (3.11, 1.2); data were taken with hydrogen at these points and at the points (2.15, 2.0), (2.67, 3.3), and (3.11, 1.7). The invariant structure function is presented in terms of W, Q2, and ω.
No description provided.
A very narrow resonance with a mass of 3.1 GeV/c2 is observed in the reaction n+Be→μ++μ−+X. The total cross section for this process, as well as its P⊥2 and x distribution, are given.
The cross section per nucleon times the branching ratio.
We present data on inclusive and semi-inclusive ϱ 0 production in 147 GeV/ c π − p interactions. We find a total cross section of 7.3 ± 1.3 mb. Most of this cross section is found in the lower topology events (⩽ 10 prongs), and in the central and forward rapidity regions. The P T 2 dependence of ϱ 0 production, 〈: n > ϱ 0 per event, and the ϱ 0 / π + ratios are also discussed.
No description provided.
Momentum spectra for forward Σ− and Ξ− production by protons on beryllium are presented. Σ− production data for two primary proton momenta are compared to test scaling of the invariant cross section. In addition, the observed single-particle momentum distributions are compared with single-particle spectra from other inclusive reactions initiated by protons.
No description provided.
No description provided.
No description provided.
The angular distribution of 2720 tracks of 1085 hadronic final states produced from (e+e-) annihilation has been studied in the 1.2 to 3.0 GeV total centre-of-mass energy range. If we parametrize the angular distribution in terms off(θ) =1 + A cos2 θ, where 6 is the angle between the hadronic track produced and the colliding-beam direction, the results show thatA is less than 0.21, with 90% confidence.
ANGULAR DISTRIBUTION OF CHARGED HADRONS FOUND TO BE 1 + (0.07 +- 0.11)*(COS(THETA)**2).
The inclusive ϱ ° production cross section has been measured in the reaction π − p → π + π − X at 205 GeV/ c . We find σ ( ϱ ° ) = 13.5 ± 3.4 mb, with most of the production occuring in the central region. Assuming σ ( ϱ + ) ≈ σ ( ϱ − ) ≈ σ ( ϱ ° ), it is concluded that approximately one-third of the pions at this energy come from ϱ -decay.
No description provided.
No description provided.
No description provided.
Inclusive production of Σ + , Σ − and Σ 0 hyperons in K − p interactions at 14.3 GeV/ c has been studied and compared to Λ production. Cross sections are presented as a function of longitudinal and transverse momenta and compared to the pp → Σ + + anything data.
No description provided.
No description provided.
No description provided.
We have measured deep inelastic muon-deuteron scattering in the range 0.4<Q2<3.4 and 1.6<ν<5.6 GeV. We have extracted the neutron structure function and find that νW2n differs significantly from νW2p, as also found in e−d scattering. To compare μ−d and e−d scattering we form the ratio r(Q2)=(νW2)μd(νW2)ed=N(1+Q2Λ2)−2 and find N=0.925±0.038 and 1Λ2=−0.019±0.016.
No description provided.
The average charged particle multiplicity, 〈 n ch ( M X 2 )〉, in the reaction K + p→K o X ++ is studied as a function of the mass squared, M X 2 , of the recoil system X and also as a function of the K o transverse momentum, p T , at incident momenta of 5.0, 8.2 and 16.0 GeV/ c . The complete data samples yield distributions which are not independent of c.m. energy squared, s , They exhibit a linear dependence on log ( M X 2 X / M o 2 )[ M o 2 =1 GeV 2 ] with a change in slope occurring for M X 2 ≈ s /2, and do not agree with the corresponding distributions of 〈 n ch 〉 as a function of s for K + p inelastic scattering. Sub-samples of the data for which K o production via beam fragmentation, central production and target fragmentation are expected to be the dominant mechanisms show that, within error, the distribution of 〈 n ch ( M X 2 )〉 versus M X 2 is independent of incident momentum for each sub-sample separately. In particular in the beam fragmentation region the 〈 n ch ( M X 2 )〉 versus M X 2 distribution agrees rather well with that of 〈 n ch 〉 versus s for inelastic K + p interactions. The latter result agrees with recent results on the reactions pp → pX and π − p → pX in the NAL energy range. Evidence is presented for the presence of different production mechanisms in these separate regions.
Two parametrizations are used for fitting of the mean multiplicity of the charged particles : MULT = CONST(C=A) + CONST(C=B)*LOG(M(P=4 5)**2/GEV**2) and MULT = CONST(C=ALPHA)**(M(P=4 5)**2/GEV**2)**POWER.