A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.
Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.
Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
We present a study of eegamma and mumugamma events using over 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider at sqrt(s) = 1.96 TeV. Having observed 453 (515) candidates in the eegamma (mumugamma) final state, we measure the Zgamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta R(lgamma} > 0.7, and invariant mass of the di-lepton pair M(ll) > 30 GeV, to be 4.96 +/- 0.30(stat. + syst.) +/- 0.30(lumi.) pb, in agreement with the standard model prediction of 4.74 +/- 0.22 pb. This is the most precise Zgamma cross section measurement at a hadron collider. We set limits on anomalous trilinear Zgammagamma and ZZgamma gauge boson couplings of -0.085 < h(30)^(gamma) < 0.084, -0.0053 < h(40)^(gamma) < 0.0054 and -0.083 < h(30)^(Z) < 0.082, -0.0053 < h(40)^(Z) < 0.0054 at the 95% C.L. for the form-factor scale Lambda = 1.2 TeV.
Measured cross section for Z0 GAMMA production. Error contains both statistics and systematics (excluding luminosity uncertainty).
We report a new measurement of J/psi, psi' and Drell-Yan cross-sections, in the kinematical domain $-0.425<y_{\rm cm}<0.575$ and $-0.5<\cos\theta_{\rm CS}<0.5$, performed at the CERN-SPS using 400 GeV/c incident protons on Be, Al, Cu, Ag, W and Pb targets. The dependence of the charmonia production cross-sections on the size of the target nucleus allows to quantify the so-called normal nuclear absorption. In the framework of the Glauber model, this new measurement is combined with results previously obtained with the same apparatus, under different experimental conditions, and leads to a precise determination of the J/psi and psi' absorption cross-sections in the surrounding nuclear matter.
Production cross sections, per taregt nucleon for J/PSI and PSI(3685) and for Drell-Yann dimuon in the mass range of 2.9-4.5 GeV/c**, integrated in the phase space windows of the measurement.
Ratios of J/PSI, PSI(3685) and Drel Yann production cross sections, and for Drell-Yann dimuon in the mass range of 2.9-4.5 GeV/c**, integrated in the phase space windows of the measurement.
Absorption cross-section obtained with Glauber fits results only from this analysis.
psi' production is studied in Pb-Pb collisions at 158 GeV/c per nucleon incident momentum. Absolute cross-sections are measured and production rates are investigated as a function of the centrality of the collision. The results are compared with those obtained for lighter colliding systems and also for the J/psi meson produced under identical conditions.
Inclusive cross sections for PSI(3685) and J/PSI, multiplied by their Branching ratios into MU+MU-,.
Inclusive cross sections for Drell Yan in the 4.2-7 GeV/c** mass range.
Inclusive cross sections for PSI(3685) and J/PSI, multiplied by theirBransching ratios into MU+MU-, and for Drell Yan in the 4.2-7 GeV/c** massrange.
The NA50 Collaboration has measured heavy-quarkonium production in p-A collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here results on the production of the Upsilon states and of high-mass Drell-Yan muon pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the measured yields are determined and compared with the results of other fixed-target experiments and with the available theoretical estimates. Finally, we also address some issues concerning the transverse momentum distributions of the measured dimuons.
Drell-Yann (for the mass region MMUMU>6GeV/c**2) and bottomonium cross sections, and their ratio.
Mean pT and Mean PT**2 for Drell-Yann (4.5<MMUMU<8 GeV/c**2) Errors for Drell-Yann are purely statistical, error value for Upsilon includes a systematical error due to uncertianty in the extrapolation of the drell-yann yield into the upsilon region. The total error is anyway dominated by the statistical contribution.
ALPHA parameter.
We present measurements of the inclusive production cross sections of the Upsilon(1S) bottomonium state in ppbar collisions at sqrt(s) = 1.96 TeV. Using the Upsilon(1S) to mu+mu- decay mode for a data sample of 159 +- 10 pb^-1 collected by the D0 detector at the Fermilab Tevatron collider, we determine the differential cross sections as a function of the Upsilon(1S) transverse momentum for three ranges of the Upsilon(1S) rapidity: 0 < |y| < 0.6, 0.6 < |y| < 1.2, and 1.2 < |y| < 1.8.
Cross section per unit of rapidity times branching ratio to MU+ MU-. Systematic (DSYS) error does not include the 6.1 PCT uncertainty on the luminosity.
Normalized differential cross section for UPSI(1S) production.. Errors contain statistical and systematics (excluding luminosity error).
We present a new measurement of J/psi production in Pb-Pb collisions at 158 GeV/nucleon, from the data sample collected in year 2000 by the NA50 Collaboration, under improved experimental conditions with respect to previous years. With the target system placed in vacuum, the setup was better adapted to study, in particular, the most peripheral nuclear collisions with unprecedented accuracy. The analysis of this data sample shows that the (J/psi)/Drell-Yan cross-sections ratio measured in the most peripheral Pb-Pb interactions is in good agreement with the nuclear absorption pattern extrapolated from the studies of proton-nucleus collisions. Furthermore, this new measurement confirms our previous observation that the (J/psi)/Drell-Yan cross-sections ratio departs from the normal nuclear absorption pattern for semi-central Pb-Pb collisions and that this ratio persistently decreases up to the most central collisions.
Centrality classes based on the transverse energy measurement Errors are rms values obtained with fit.
Cross sections ratio J/PSI/Drell-Yan as a function of ET IN GEV obtained withthe ET Centrality estimator.
Cross sections ratio J/PSI/Drell-Yan as a function of NPART obtained withthe ET Centrality estimator.
The Standard Model predictions for $W\gamma$ and $Z\gamma$ production are tested using an integrated luminosity of 200 pb$^{-1}$ of \ppbar collision data collected at the Collider Detector at Fermilab. The cross sections are measured selecting leptonic decays of the $W$ and $Z$ bosons, and photons with transverse energy $E_T>7$ GeV that are well separated from leptons. The production cross sections and kinematic distributions for the $W\gamma$ and $Z\gamma$ are compared to SM predictions.
Measured cross sections for W+ GAMMA production.
Measured cross sections for Z0 GAMMA production.
Charmonium production in p – A collisions is a unique tool for the study of the interaction of bound c c states in nuclear matter. It can provide details on the basic features of the resonance formation mechanism and, in particular, on its non-perturbative aspects. In this Letter, we present an experimental study of charmonia and Drell–Yan production in proton–nucleus collisions at 450 GeV/ c . The results are analyzed in the framework of the Glauber model and lead to the values of the nuclear absorption cross-section σ abs pA for J / ψ and ψ ′. Then, we compare the J / ψ absorption in proton–nucleus and sulphur–uranium interactions, using NA38 data. We obtain that, for the J / ψ , σ abs pA and σ abs SU are compatible, showing that no sizeable additional suppression mechanism is present in S–U collisions, and confirming that the anomalous J / ψ suppression only sets in for Pb–Pb interactions.
The J/PSI production cross section times the branching ratio to MU+ MU- pernucleon-nucleon collision for the differential nuclear targets.
The PSI(3685) production cross section times the branching ratio to MU+ MU-per nucleon-nucleon collision for the differential nuclear targets.
The Drell Yan cross section, divided by the mass number A, and multiplied by the isospin correction factors in the mass interval 2.9 to 4.5 GeV.
We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections (d2σ/dpTdy)|y|<0.4, as well as on the ϒ(1S) polarization in pp¯ collisions at s=1.8TeV using a sample of 77±3pb−1 collected by the collider detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. The measured angular distribution of the muons in the ϒ(1S) rest frame is consistent with unpolarized meson production.
The differential cross section times the branching ratio into mu+ mu- for UPSILON(1S) production.
The differential cross section times the branching ratio into mu+ mu- for UPSILON(2S) production. The first DSYS error is the systematic error due to the polarization of the UPSILON which is shown seperately from the other systematic errors.
The differential cross section times the branching ratio into mu+ mu- for UPSILON(3S) production. The first DSYS error is the systematic error due to the polarization of the UPSILON which is shown seperately from the other systematic errors.