An experimental study of $\omega$ photoproduction on the proton was conducted by using the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. The $\gamma p\to\omega p$ differential cross sections are measured from threshold to the incident-photon energy $E_\gamma=1.40$ GeV ($W=1.87$ GeV for the center-of-mass energy) with 15-MeV binning in $E_\gamma$ and full production-angle coverage. The quality of the present data near threshold gives access to a variety of interesting physics aspects. As an example, an estimation of the $\omega N$ scattering length $\alpha_{\omega p}$ is provided.
The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process, in which the final photon is emitted by the electron rather than the proton. We report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
The gp-->etap reaction has been measured with the Crystal Ball and TAPS multiphoton spectrometers in the energy range from the production threshold of 707 MeV to 1.4 GeV (1.49 =< W >= 1.87 GeV). Bremsstrahlung photons produced by the 1.5-GeV electron beam of the Mainz Microtron MAMI-C and momentum analyzed by the Glasgow Tagging Spectrometer were used for the eta-meson production. Our accumulation of 3.8 x 10^6 gp-->etap-->3pi0p-->6gp events allows a detailed study of the reaction dynamics. The gp-->etap differential cross sections were determined for 120 energy bins and the full range of the production angles. Our data show a dip near W = 1680 MeV in the total cross section caused by a substantial dip in eta production at forward angles. The data are compared to predictions of previous SAID and MAID partial-wave analyses and to thelatest SAID and MAID fits that have included our data.
We have measured inclusive data on $K^+$-meson production in $pp$ collisions at COSY J\"ulich close to the hyperon production threshold and determined the hyperon-nucleon invariant mass spectra. The spectra were decomposed into three parts: $\Lambda p$, $\Sigma^0p$ and $\Sigma^+n$. The cross section for the $\Sigma^+n$ channel was found to be much smaller than a previous measurement in that excess energy region. The data together with previous results at higher energies are compatible with a phase space dependence.
We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
Data on pbar-b annihilation in flight into pizero-pizero-eta are presented for nine beam momenta 600 to 1940 MeV/c. The strongest four intermediate states are found to be f_2(1270)-eta, a_2(1320)-pi, sigma-eta and a_0(980)-pi. Partial wave analysis is performed mainly to look for resonances formed by pbar-p and decaying into pizero-pizero-eta through these intermediate states. There is evidence for the following s-channel I = 0 resonances : two 4^{++} resonances with mass and width (M,Gamma) at (2044, 208) MeV and (2320+-30, 220+-30) MeV/ three 2^{++} resonances at (2020+-50, 200+-70) MeV, (2240+-40, 170+-50) MeV and (2370+-50, 320+-50) MeV/ two 3^{++} resonances at (2000+-40, 250+-40) MeV and (2280+-30, 210+-30) MeV/ a 1^{++} resonance at (2340+-40, 340+-40) MeV/ and two 2^{-+} resonances at (2040+-40, 190+-40) MeV and (2300+-40, 270+-40) MeV.
No description provided.
Hard exclusive electroproduction of $\omega$ mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive $\pi\omega$ transition form factor.
The amplitudes of the five sine and two cosine modulations as determined in the entire kinematic region. The results receive an additional 8.2% scale uncertainty corresponding to the target-polarization uncertainty.
Results on the kinematic dependences of the five asymmetry amplitudes $A_{UT}$ and two amplitudes $A_{UU}$. The first two columns correspond to the $-t'$ intervals $0.00 - 0.07 - 0.20$ GeV$^2$ and the last two columns to the $Q^{2}$ intervals $1.00 - 1.85 - 10.00$ GeV$^2$. The results receive an additional 8.2% scale uncertainty corresponding to the target-polarization uncertainty.
Results on the five asymmetry amplitudes $A_{UT}$ and two amplitudes $A_{UU}$ in the entire kinematic region, but separated into longitudinal and transverse parts. The first column ($K=L$) gives the results for the longitudinal components, while the second column, ($K=T$), shows the results for the transverse components. The results receive an additional 8.2% scale uncertainty corresponding to the target-polarization uncertainty.
A first measurement is presented of exclusive photoproduction of $\rho^0$ mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years $2006$ and $2007$ at a centre-of-mass energy of $\sqrt{s}=319$ GeV and correspond to an integrated luminosity of $1.16$ pb$^{-1}$. The $\rho^0$ mesons with transverse momenta $p_T<1$ GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, $x_L>0.35$, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality $Q^2 < 2$ GeV$^2$, the total energy of the photon-proton system $20 < W_{\gamma p} < 100$ GeV and the polar angle of the leading neutron $\theta_n < 0.75$ mrad. The cross section of the reaction $\gamma p \to \rho^0 n \pi^+$ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a $\rho^0$ meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, $\sigma^{\rm el}(\gamma\pi^+ \to \rho^0\pi^+)$, is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction $\gamma p\to\rho^0 n \pi^+$.
The $\gamma p$ cross section integrated in the domain $0.35 < x_L < 0.95$ and $-t^\prime < 1$~GeV$^2$ and averaged over the energy range $20 < W_{\gamma p} < 100$ GeV for two intervals of leading neutron transverse momentum.
Differential photoproduction cross sections ${\rm d}\sigma_{\gamma p}/{\rm d}x_L$ for the exclusive process $\gamma p \to \rho^0 n \pi^+$ in two regions of neutron transverse momentum and $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.
Double differential photoproduction cross sections ${\rm d^2}\sigma_{\gamma p}/{\rm d}x_L{\rm d}p_{T,n}^2$ in the range $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.
Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector in the reaction $\gamma p\to p\pi^0$ for photon energies between 0.85 and 2.50 GeV. The $\pi^0$ mesons are observed in their dominant neutral decay mode: $\pi^0\to\gamma\gamma$. For the first time, the differential cross sections cover the very forward region, $\theta_{\rm c.m.}<60^\circ$. A partial-wave analysis of these data within the Bonn-Gatchina framework observes the high-mass resonances $G_{17}$(2190), $D_{13}$(2080), and $D_{15}$(2070).
Differential cross section for the process GAMMA P --> PI0 P as a function of the cosine of the centre-of-mass scattering angle of the PI0 for photon energies from 0.850 to 0.875 GeV.
Differential cross section for the process GAMMA P --> PI0 P as a function of the cosine of the centre-of-mass scattering angle of the PI0 for photon energies from 0.875 to 0.900 GeV.
Differential cross section for the process GAMMA P --> PI0 P as a function of the cosine of the centre-of-mass scattering angle of the PI0 for photon energies from 0.900 to 0.925 GeV.