The differential cross-section for the elastic neutron-proton-scattering has been measured for neutron energies between 4 and 16 GeV and | t | from 0.3 to 1.3 (GeV/ c ) 2 . The results can be fitted by exp( A + Bt ), where B increases slightly with energy indicating shrinkage. The values of B for n−p scattering are in good agreement with the corresponding data for p−p scattering.
'1'. '2'. '3'. '4'.
Pseudorapidity gap distributions in proton-proton collisions at sqrt(s) = 7 TeV are studied using a minimum bias data sample with an integrated luminosity of 7.1 inverse microbarns. Cross sections are measured differentially in terms of Delta eta F, the larger of the pseudorapidity regions extending to the limits of the ATLAS sensitivity, at eta = +/- 4.9, in which no final state particles are produced above a transverse momentum threshold p_T Cut. The measurements span the region 0 < Delta eta F < 8 for 200 < p_T Cut < 800 MeV. At small Delta eta F, the data test the reliability of hadronisation models in describing rapidity and transverse momentum fluctuations in final state particle production. The measurements at larger gap sizes are dominated by contributions from the single diffractive dissociation process (pp -> Xp), enhanced by double dissociation (pp -> XY) where the invariant mass of the lighter of the two dissociation systems satisfies M_Y <~ 7 GeV. The resulting cross section is d sigma / d Delta eta F ~ 1 mb for Delta eta F >~ 3. The large rapidity gap data are used to constrain the value of the pomeron intercept appropriate to triple Regge models of soft diffraction. The cross section integrated over all gap sizes is compared with other LHC inelastic cross section measurements.
The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 200 MeV in the gap.
The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 400 MeV in the gap.
The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 600 MeV in the gap.
Data are presented from a high statistics bubble chamber experiment to study K − p interactions in the c.m. energy range 1775 to 1957 MeV. For the reactions K − p → K − p, K − p → K 0 n , K − p → Λπ 0 and K − p → Σ ± π ∓ channel cross sections, differential cross sections and, where appropriate, polarisation distributions have been obtained. The channel cross sections for K − p → Σ 0 π 0 are presented. In general the results are in agreement with those previously published although a significant discrepancy has been found in the Σ ± π ∓ cross sections at the lower energies. New measurements of the Σ ± lifetimes have also been obtained ( τ Σ − = 1.49 ± 0.03 × 10 −10 sec, τ Σ + = 0.807 ± 0.013 × 10 −10 sec).
No description provided.
THE FORWARD DIFFERENTIAL CROSS SECTION IS THE EXTRAPOLATED VALUE OF THE LEGENDRE POLYNOMIAL FIT.
No description provided.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
Results of a high-statistics study of elastic scattering and meson resonances produced by π−p interactions at 8 GeV/c are presented. Large statistics and small systematic errors permit examination of the complete kinematic region. Total differential cross sections are given for ρ0,−, f0, g0,−, Δ±, Δ0, and N* resonances. Spin-density matrix elements and Legendre-polynomial moments are given for ρ, f, and Δ resonances. The results for ρ0 and f0 resonances are compared with the predictions of a Regge-pole-exchange model. Properties of the above resonances are compared and discussed. In particular, we present evidence that the ρ0 and f0 production mechanisms are similar. The similarity of the g0 t distribution to that of the ρ0 and f0 suggests a common production mechanism for all three resonances.
No description provided.
No description provided.
SLOPE REFERS TO EXPONENTIAL FIT IN U.
We have carried out a partial-wave analysis (PWA) of three-pion systems produced in the coherent dissociation of π+ mesons on nuclear targets. The data have been analyzed for copper and lead targets at an incident π+ energy of 202.5 GeV. This PWA provides further evidence for resonant contributions to JP=1+ and 0− waves at 3π masses below 1.5 GeV, which can be plausibly identified with A1 and π′ mesons. The contribution from electromagnetic production of the A2 has also been extracted, and an estimate for Coulomb production and radiative width of the A1 has been obtained.
No description provided.
We have carried out a systematic study of the coherent dissociation of pions into 3 pions using nuclear targets. The experiment was performed at Fermilab using a high resolution forward spectrometer. Data were taken with carbon, copper and lead targets at an incident momentum of 202.5 GeV/c. Results are presented on momentum transfers, 3-pion masses, and on the nuclearA-dependence of the production cross section.
No description provided.
No description provided.
No description provided.
We have studied the diffractive dissociation into di-jets of 500 GeV/c pions scattering coherently from carbon and platinum targets. Extrapolating to asymptotically high energies (where t_{min} approaches 0) we find that when the per-nucleus cross-section for this process is parameterized as $ \sigma = \sigma_0 A^{\alpha} $, $ \alpha $ has values near 1.6, the exact result depending on jet transverse momentum. These values are in agreement with those predicted by theoretical calculations of color-transparency.
Cross sections is fitted to A**POWER.
Photon diffractive dissociation, $\gamma p \to Xp$, has been studied at HERA with the ZEUS detector using $ep$ interactions where the virtuality $Q^2$ of the exchanged photon is smaller than 0.02 GeV$^2$. The squared four-momentum $t$ exchanged at the proton vertex was determined in the range $0.073<|t|<0.40$ GeV$^2$ by measuring the scattered proton in the ZEUS Leading Proton Spectrometer. In the photon-proton centre-of-mass energy interval $176<W<225$ GeV and for masses of the dissociated photon system $4<M_X<32$ GeV, the $t$ distribution has an exponential shape, $dN/d|t| \propto \exp{(-b|t|)}$, with a slope parameter $b=6.8 \pm 0.9$~(stat.)~$ ^{+1.2}_{-1.1}$~(syst.)~GeV$^{-2}$.
T is the squared four momentum transfer at the proton vertex.
SLOPE of the DN/DT distribution.
We discuss the structure of the momentum transfer distributions for the diffractive dissociation processes p → n π + , p → Δ ++ π − and K − → K 890 ∗0 π − . In the near-threshold mass region a clear break of slope is found around t ′KK ∼ 0.25 GeV 2 for the two baryonic channels, whereas no comparable structure is seen for the mesonic system. The K → K ∗ π differential cross section exhibits a nearly exponential behaviour up to t ′ pp ∼ 0.6 GeV 2 , falling over three orders of magnitude. The slope variations and breaks are strongly correlated both to the mass region considered and to the decay angle of the fragmentation system.
No description provided.