The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.
No description provided.
No description provided.
No description provided.
Using 106 000 hadronic events obtained with the ALEPH detector at LEP at energies close to the Z resonance peak, the strong coupling constant α s is measured by an analysis of energy-energy correlations (EEC) and the global event shape variables thrust, C -parameter and oblateness. It is shown that the theoretical uncertainties can be significantly reduced if the final state particles are first combined in clusters using a minimum scaled invariant mass cut, Y cut , before these variables are computed. The combined result from all shape variables of pre-clustered events is α s ( M Z 2 = 0.117±0.005 for a renormalization scale μ= 1 2 M Z . For μ values between M Z and the b-quark mass, the result changes by −0.009 +0.006 .
No description provided.
Error contains both experimental and theoretical errors.
An experimental study was made of a ωπ 0 system produced in the charge exchange reaction π − p→ ωπ 0 n at 8.95 GeV/ c . The moment analysis was performed to study the spin-parity of the system in the mass region between 1.04 and 1.88 GeV. A clear peak of b 1 (1235) was observed in the J PC = 1 +− wave. No significant structure was seen in the 1 −− wave. An upper limit is obtained to be at most 1.9 μb for σ ( π − p→X 0 n)Br(X 0 → ωπ 0 ) for X 0 with a width of 130 MeV at 1480 MeV, where C(1480) meson with J PC = 1 −− has been reported in a φπ 0 decay mode.
Upper limit for pi- p --> X0 n (X0 --> omega pi0) with width 130 MeV at 1480 MeV where the C(1480) has been reported with JPC = 1-- in the phi pi0 decay mode.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
T - MOMENTUM TRANSFER FROM BEAM PROTON TO LEADING PROTON.
We report a measurement of the electroweak parameters sin2θw and ϱ based on the ratios of neutral current to charged current events measured in the Fermilab narrow-band neutrino beam at energies of 30–240 GeV. The data are fully corrected for radiative effects, heavy-quark production, and other effects. The best value for sin2θw obtained, sin2θw=0.239±0.011, is consistent with the most recent values fromW andZ production, as well as from other neutrino experiments.
No description provided.
No description provided.
The production of the neutralK− (892) resonances by 200 GeVK− andπ− has been studied over the kinematic range 0.0
No description provided.
No description provided.
No description provided.
We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.
We present a new high-statistics measurement of the cross section for the process e+e−→e+e−π+π− at a center-of-mass energy of 29 GeV for invariant pion-pair masses M(π+π−) between 350 MeV/c2 and 1.6 GeV/c2. We observe the f2(1270) and measure its radiative width to be 3.15±0.04±0.39 keV. We also observe an enhancement in the π+π− spectrum near 1 GeV. General agreement is found with unitarized models of the γγ→π+π− reaction that include final-state interactions.
No description provided.
Statistical errors only.