Date

Coherent rho0 production in ultra-peripheral heavy ion collisions.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 272302, 2002.
Inspire Record 588142 DOI 10.17182/hepdata.102319

The STAR collaboration reports the first observation of exclusive rho^0 photo-production, AuAu->AuAu rho^0, and rho^0 production accompanied by mutual nuclear Coulomb excitation, AuAu->Au*Au*rho^0, in ultra-peripheral heavy-ion collisions. The rho^0 have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt(s_NN)=130GeV agree with theoretical predictions treating rho^0 production and Coulomb excitation as independent processes.

3 data tables

Differential cross section $d\sigma(\gamma Au \rightarrow \rho Au)/dt$ of $\rho^0$ candidates

Differential cross section $d\sigma/dM_{\pi\pi}$ for two-track (xn,xn) events with pair $p_T<150$ MeV/$c$

Total background in the differential cross section $d\sigma/dM_{\pi\pi}$


Azimuthal anisotropy of K0(S) and Lambda + anti-Lambda production at mid-rapidity from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 127 (2021) 089901, 2021.
Inspire Record 587154 DOI 10.17182/hepdata.102318

We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV at RHIC. The value of v2 as a function of transverse momentum of the produced particles pt and collision centrality is presented for both particles up to pt 3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.

8 data tables

$v_2$ of $K_s^0$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

$v_2$ of $K_s^0$ as a function of $p_T$ for 11-45% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

$v_2$ of $\Lambda+\bar{\Lambda}$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.

More…

Mid-rapidity Lambda and Antilambda production in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 092301, 2002.
Inspire Record 584141 DOI 10.17182/hepdata.99050

We report the first measurement of strange ($\Lambda$) and anti-strange ($\bar{\Lambda}$) baryon production from $\sqrt{s_{_{NN}}}=130$ GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at mid-rapidity are presented as a function of centrality. The yield of $\Lambda$ and $\bar{\Lambda}$ hyperons is found to be approximately proportional to the number of negative hadrons. The production of $\bar{\Lambda}$ hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models.

5 data tables

Transverse mass distributions of $\Lambda$ at mid-rapidity ($|y|<0.5$) for selected centrality bins. Only statistical errors are listed. Combined systematic errors estimated to be $10\%$. The dashed lines are Boltzmann fits. Note that multiplicative factors have been applied to data from the two most central data sets for display.

Transverse mass distributions of $\bar\Lambda$ at mid-rapidity ($|y|<0.5$) for selected centrality bins. Only statistical errors are listed. Combined systematic errors estimated to be $10\%$. The dashed lines are Boltzmann fits. Note that multiplicative factors have been applied to data from the two most central data sets for display.

The mid-rapidity $\bar\Lambda$ ($|y|<0.5$) transverse momentum distribution from the top $5\%$ most central collisions. For comparison the distributions for negative hadrons ($d^{2}N/(2 \pi p_{T})dp_{T}d\eta$, $|\eta|<0.1$) and anti-protons ($|y|<0.1$) for the similar centrality bin are included. Only statistical errors are listed. Statistical errors are less than the size of the data points. Combined systematic errors on hyperons estimated to be $10\%$. Correlated systematic errors for negative hadrons estimated to be $6\%$. Systematic errors on antiprotons are $8\%$ point-to-point and $10\%$ in the overall normalization.

More…

Midrapidity phi production in Au+Au collisions at sNN =130 GeV

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.C 65 (2002) 041901, 2002.
Inspire Record 584631 DOI 10.17182/hepdata.102317

We present the first measurement of midrapidity vector meson φ production in Au+Au collisions at RHIC (sNN=130 GeV) from the STAR detector. For the 11% highest multiplicity collisions, the slope parameter from an exponential fit to the transverse mass distribution is T=379±50(stat)±45(syst) MeV, the yield dN/dy=5.73±0.37(stat)±0.69(syst) per event, and the ratio Nφ/Nh− is found to be 0.021±0.001(stat)±0.004(syst). The measured ratio Nφ/Nh− and T for the φ meson at midrapidity do not change for the selected multiplicity bins.

4 data tables

Transverse mass distriution of $\phi$ for 0-11% centrality in Au+Au collisions at 130 GeV.

Transverse mass distriution of $\phi$ for 11-26% centrality in Au+Au collisions at 130 GeV.

Transverse mass distriution of $\phi$ for 26-85% centrality in Au+Au collisions at 130 GeV.

More…

Determination of alpha(s) from hadronic event shapes in e+ e- annihilation at 192-GeV <= s**(1/2) <= 208-GeV

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 536 (2002) 217-228, 2002.
Inspire Record 586115 DOI 10.17182/hepdata.49741

Results are presented from a study of the structure of high energy hadronic events recorded by the L3 detector at sqrt(s)>192 GeV. The distributions of several event shape variables are compared to resummed O(alphaS^2) QCD calculations. We determine the strong coupling constant at three average centre-of-mass energies: 194.4, 200.2 and 206.2 GeV. These measurements, combined with previous L3 measurements at lower energies, demonstrate the running of alphaS as expected in QCD and yield alphaS(mZ) = 0.1227 +- 0.0012 +- 0.0058, where the first uncertainty is experimental and the second is theoretical.

9 data tables

The measured ALPHA_S at three centre-of-mass energies from fits to the individual event shape distributions. The first error is statistcal, the first DSYS error is the experimental systematic uncertainty, and the second DSYS error is the theoryuncertainty.

Updated ALPHA_S measurements from the BT, BW and C-Parameter distributions,from earlier L3 data at lower centre-of-mass energies.. The first error is the total experimental error (stat+sys in quadrature) and the DSYS error is the theory uncertainty.

Combined ALPHA_S values from the five event shape variables. The first error is statistical, the first DSYS error is the experimental systematic uncertainity, the second DSYS error is the uncertainty from the hadronisdation models, andthethird DSYS errpr is the uncertainty due to uncalculated higher orders in the QCDpredictions.

More…

Lambda and Sigma0 pair production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 536 (2002) 24-33, 2002.
Inspire Record 585621 DOI 10.17182/hepdata.48892

Strange baryon pair production in two-photon collisions is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- centre-of-mass energies from 91 GeV to 208 GeV, corresponding to an integrated luminosity of 844 pb-1. The processes gamma gamma -> Lambda Anti-lambda and gamma gamma -> Sigma0 Anti-sigma0 are identified. Their cross sections as a function of the gamma gamma centre-of-mass energy are measured and results are compared to predictions of the quark-diquark model.

3 data tables

Cross sections for LAMBDA and SIGMA0 pair production in the mass region 2.23 to 3.5 GeV.

Cross sections for LAMBDA pair production as a function of the 2 photon invariant mass W. The average W of each bin is assumes a W**(-8) distribution.

Cross sections for SIGMA0 pair production as a function of the 2 photon invariant mass W. The average W of each bin is assumes a W**(-8) distribution.


Inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 535 (2002) 59-69, 2002.
Inspire Record 585623 DOI 10.17182/hepdata.54885

Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV &lt; P_T &lt; 12 GeV and |eta| &lt; 1.4. The cross sections sigma(e^+e^- -> e^+e^-D^{*+-}X) in this kinematical region is measured and the sigma(e^+e^- -> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.

4 data tables

Visible D*+- production cross section in the given phase space range. Data are given for each D* decay channel, and the average.

Total cross section for open charm production. Data are given for each D* decay channel, and the combined average. The second systematic (DSYS) error is the uncertainty on the extrapolation from the visible to the full phase space region.

The measured D*+- production cross section in the region ABS(ETARAP) < 1.4.The DSIG/DPT points refer to the centre of the bin and the SIG points are the integrated over the bin.

More…

Measurement of charged-particle multiplicity distributions and their H(q) moments in hadronic Z decays at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 577 (2003) 109-119, 2003.
Inspire Record 565148 DOI 10.17182/hepdata.49796

The charged-particle multiplicity distribution is measured for all hadronic events as well as for light-quark and b-quark events produced in e+e- collisions at the Z pole. Moments of the charged-particle multiplicity distributions are calculated. The H moments of the multiplicity distributions are studied, and their quasi-oscillations as a function of the rank of the moment are investigated.

6 data tables

Moments of the charged particle multiplicity distribution with KOS and LAMBDA decay for all events.

Moments of the charged particle multiplicity distribution without KOS and LAMBDA decay for all events.

Moments of the charged particle multiplicity distribution with KOS and LAMBDA decay for light quark events.

More…

Double tag events in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 531 (2002) 39-51, 2002.
Inspire Record 565440 DOI 10.17182/hepdata.49820

Double-tag events in two-photon collisions are studied using the L3 detector at LEP centre-of-mass energies from root(s)=189 GeV to 209 GeV. The cross sections of the e+e- -> e+e- hadrons and gamma*gamma* -> hadrons processes are measured as a function of the photon virtualities, Q1^2 and Q2^2, of the two-photon mass, W_gammagamma, and of the variable Y=ln(W_gammagamma^2/(Q1 Q2)), for an average photon virtuality &lt;Q2> = 16 GeV2. The results are in agreement with next-to-leading order calculations for the process gamma*gamma* -> q qbar in the interval 2 &lt;= Y &lt;= 5. An excess is observed in the interval 5 &lt; Y &lt;= 7, corresponding to W_gammagamma greater than 40 GeV . This may be interpreted as a sign of resolved photon QCD processes or the onset of BFKL phenomena.

6 data tables

Differential cross section as a function of the photon virtualities Qi**2. Here Q1 is the virtuality w.r.t the electron vertex, and Q2 w.r.t the positron vertex. Data are given both before and after radiative corrections.

Differential cross section as a function of W, the invariant mas of the virtual GAMMA*GAMMA* system. Data are given both before and after radiative corrections.

Differential cross section as a function of the variable LN(W**2/Q1*Q2). Data are given both before and after radiative corrections.

More…

Measurement of inclusive antiprotons from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 262302, 2001.
Inspire Record 564369 DOI 10.17182/hepdata.98922

We report the first measurement of inclusive antiproton production at mid-rapidity in Au+Au collisions at 130 GeV by the STAR experiment at RHIC. The antiproton transverse mass distributions in the measured transverse momentum range of 0.25 < pT < 0.95 GeV/c are found to fall less steeply for more central collisions. The extrapolated antiproton rapidity density is found to scale approximately with the negative hadron multiplicity density.

4 data tables

Tranverse mass distributions for different centralities

Antiproton fit parameters and yields. Systematic errors are 10%.

Antiproton fit parameters and yields. Systematic errors are 10%.

More…