We have measured the cross section for γγ production with the TOPAZ detector in the energy region √ s =50.0–61.4 GeV. The observed cross section for γγ production integrated over |cos θ | ⩽ 0.77 is 50.2±0.8±2.2 pb at 〈√ s 〉=57.6 GeV and the ratio of this value to the QED prediction is 1.01±0.02±0.04. The angular distribution is in good agreement with the QED predictions, thereby setting limits on the compositeness scales, Λ L+R + =168 GeV, Λ L+R − =97 GeV, Λ L,R =141 GeV, Λ L,R − =81 GeV, and Λ L−R ± =68 GeV, at the 95% confidence level. The reaction e + e − → γγγ was also studied and was found consistent with the QED prediction.
No description provided.
No description provided.
No description provided.
This paper reports measurements of the differential cross sections for the reactions e+e−→e+e− (Bhabha scattering) and e+e−→γγ (γ-pair production). The reactions are studied at a center-of-mass energy of 29 GeV and in the polar-angular region ‖costheta‖<0.55. A direct cross-section comparison between these two reactions provides a sensitive test of the predictions of quantum electrodynamics (QED) to order α3. When the ratio of γ-pair to Bhabha experimental cross sections, integrated over ‖costheta‖<0.55, is divided by the same ratio predicted from α3 QED theory, the result is 1.007±0.009±0.008. The 95%-confidence limits on the QED-cutoff parameters are Λ+>154 GeV and Λ−>220 GeV for Bhabha scattering, and Λ+>59 GeV and Λ−>59 GeV for γ-pair production.
No description provided.
The ratio of differential cross sections for the reactions e + e − → γγ and e + e − → e + e − is measured at s = 29 GeV in the central polar angle region, |cos θ | < 0.55, and compared to the same ratio calculated by QED to order α 3 . The ratio of these ratios, integrated over this angular region, is 1.007±0.009±0.008, demonstrating excellent agreement between theory and experiment. The 95% confidence limits on the QED cut-off parameters for the γγ final state are Λ + > 59 GeV and Λ - > 59 GeV.
No description provided.