Date

Pi- p elastic scattering between 1.7 and 2.5 gev/c

Hill, R.E. ; Booth, N.E. ; Esterling, R.J. ; et al.
Phys.Rev.D 1 (1970) 729-758, 1970.
Inspire Record 61850 DOI 10.17182/hepdata.4893

The polarization and the differential cross section in π−p elastic scattering have been measured at incident pion laboratory momenta of 1.70, 1.88, 2.07, 2.27, and 2.50 GeV/c. The experiment was carried out at the Argonne zero-gradient synchrotron with a polarized proton target. Details of the apparatus and data analysis are presented here together with the final results. A partial-wave analysis of the data has verified the JP=72+ assignment for the Δ(1950) and established a JP=72− assignment for the N(2190). It does not support a JP=112+ assignment for the Δ(2460), nor does it give support for some of the possible resonances found in the CERN phase-shift analysis. Apart from the resonance behavior, the partial-wave analysis reveals several new features. We find a striking correlation among the various partial-wave amplitudes at the highest energy, which is different for J=l+12 and J=l−12. In addition, several fixed-(−t) features of high-energy scattering emerge in the energy region of this analysis.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Polarization in pp Elastic Scattering at Large Momentum Transfers

Booth, N.E. ; Conforto, G. ; Esterling, R.J. ; et al.
Phys.Rev.Lett. 21 (1968) 651-652, 1968.
Inspire Record 944913 DOI 10.17182/hepdata.21669

Measurements of the polarization in pp elastic scattering have been made at 5.15 GeV/c over the range −t=0.2 to 1.8 (GeV/c)2. The data are compared with a Regge-pole model, and with the diffraction model of Durand and Lipes in which the absorptive part of the pp interaction is derived from the electromagnetic form factor of the proton. The latter model reproduces the t dependence of the experimental data in a qualitative way.

1 data table