Measurements of the A dependence and pseudorapidity interval (δη) dependence of midrapidity ET distributions in a half-azimuth (Δφ=π) electromagnetic calorimeter are presented for p+Be, p+Au, O+Cu, Si+Au, and Au+Au collisions at the BNL-AGS (Alternating-Gradient Synchrotron). The shapes of the upper edges of midrapidity ET distributions as a function of the pseudorapidity interval δη in the range 0.3 to 1.3, roughly centered at midrapidity, are observed to vary with δη, like multiplicity—the upper edges of the distributions flatten as δη is reduced. At the typical fixed upper percentiles of ET distributions used for nuclear geometry characterization by centrality definition—7 percentile, 4 percentile, 2 percentile, 1 percentile, 0.5 percentile—the effect of this variation in shape on the measured projectile Ap dependence for 16O, 28Si, 197Au projectiles on an Au target is small for the ranges of δη and percentile examined. The ET distributions for p+Au and p+Be change in shape with δη; but in each δη interval the shapes of the p+Au and p+Be distributions remain indentical with each other—a striking confirmation of the absence of multiple-collision effects at midrapidity at AGS energies. The validity of the nuclear geometry characterization versus δη is illustrated by plots of the ET(δη) distribution in each δη interval in units of the measured 〈ET(δη)〉p+Au in the same δη interval for p+Au collisions. These plots, in the physically meaningful units of “number of average p+Au collisions,” are nearly universal as a function of δη, confirming that the reaction dynamics for ET production at midrapidity at AGS energies is governed by the number of projectile participants and can be well characterized by measurements in apertures as small as Δφ=π, δη=0.3.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.22 < ETARAP < 2.5, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.38 < ETARAP < 2.34, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.54 < ETARAP < 2.18, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
A systematic set of measurements of the global transverse energy distributions, dσ/dET and dET/dη, from beams of protons, O16 and Si28 at 14.6A GeV/c, incident on targets ranging from Be to Au is presented. The detector was a semicircular array of lead-glass blocks, covering polar angles 9°<θ<32°, whose total response provides a good measure of the produced particle yield in the central rapidity region of these reactions. Proton-nucleus spectra exhibit a similar shape on the high-energy tail, independent of target, suggesting that produced particles in such events arise mostly from the first collision of the projectile proton. For targets heavier than Cu, the high-energy edges of the oxygen-nucleus spectra, and of the silicon-nucleus spectra, reach ratios consistent with the geometry of central collisions. Angular distributions, dET/dη, are characterized by Gaussian fits, and an acceptance-independent form of the differential cross section is found, based on the maximum value of dET/dη. The projectile dependence of nucleus-nucleus spectra is studied in terms of two very different models: simple energy scaling and the wounded projectile nucleon model of p+A convolutions.
No description provided.
No description provided.
No description provided.
Antiproton production cross sections have been measured for minimum bias and central Si+Al and Si+Au collisions at 14.6 A GeV c . The data presented cover the range of transverse momentum from 0.3 to 1.2 GeV c and lab rapidities from 1.1 to 1.7 units. The relative p π − and p K − yields are found to be the smallest for the heaviest system measured, central Si+Au collisions. For these collisions, the p π − ratio, determined from integrated yields for 1.1⩽ y ⩽1.7, is (0.84±0.07)×10 −3 . In the same rapidity interval, the average antiproton inverse m ⊥ slope is 141±14 MeV for central Si+Al and central Si+Au collisions.
Definition of the CENTRAL and MINIMUM BIAS events see text.
Definition of the CENTRAL and MINIMUM BIAS events see text.
The beam energy and invariant mass dependence of the dielectron yield in p + d interactions relative to the yield in p + p interactions is presented for incident kinetic energies from 1.0–4.9 GeV. The ratio of the yield in p + d interactions to that in p + p interactions decreases from 10.5±1.6 at 1.0 GeV to 1.96±0.08 at 4.9 GeV for electron pairs with invariant masses ⩾ 0.15 GeV/ c 2 . The large ratio at 1.0 GeV suggests that dielectron production in the p + d system is dominated by a p + n process. The beam energy dependence of the ratio indicates that this p + n contribution decreases with respect to the other dielectron sources as the incident energy is increased.
No description provided.
No description provided.
No description provided.
We present measurements from Brookhaven Experiment 864 of neutron invariant multiplicity in 11.5 A GeV/c Au+Pb collisions. The measurements span a rapidity range from center-of-mass to beam rapidity (y(beam)=3.2) and are presented as a function of event centrality. The results are compared with E864 measurements of proton invariant multiplicity and an average n/p ratio at hadronic freeze-out of 1.19+-.08 is determined for the rapidity range y=1.6 to y=2.4. We discuss briefly the implications of this ratio within a simple equilibrium model of the collision system.
The errors are statistical and systematic errors added in quadrature. 10% most central events.
We present results from Experiment 864 for antiproton production and antideuteron limits in Au + Pb collisions at 11.5 GeV/c per nucleon. We have measured invariant multiplicities for antiprotons for rapidities 1.4<y<2.4 at low transverse momentum as a function of collision geometry. When compared with the results from Experiment 878 our measurements suggest a significant contribution to the measured antiproton yield from the decay of strange antibaryons. We have also searched for antideuterons and see no statistically significant signal. Thus, we set upper limits on the production at approximately 3 x 10^{-7} per 10% highest multiplicity Au + Pb interaction.
CENTRALITY = 10 PCT.
CENTRALITY = 100 TO 70 PCT.
CENTRALITY = 70 TO 30 PCT.
We present the final results from Experiment 864 of a search for charged and neutral strange quark matter produced in interactions of 11.5 GeV/c per nucleon Au beams with Pt or Pb targets. Searches were made for strange quark matter with A>4. Approximately 30 billion 10% most central collisions were sampled and no strangelet states with A<100 were observed. We find 90% confidence level upper limits of approximately 10^{-8} per central collision for both charged and neutral strangelets. These limits are for strangelets with proper lifetimes greater than 50 ns. Also limits for H^{0}-d and pineut production are given. The above limits are compared with the predictions of various models. The yields of light nuclei from coalescence are measured and a penalty factor for the addition of one nucleon to the coalescing nucleus is determined. This is useful in gauging the significance of our upper limits and also in planning future searches for strange quark matter.
No description provided.
No description provided.
No description provided.
We report on measurements by the E864 experiment at the BNL-AGS of the yields of light nuclei in collisions of Au(197) with beam momentum of 11.5 A GeV/c on targets of Pb(208) and Pt(197). The yields are reported for nuclei with baryon number A=1 up to A=7, and typically cover a rapidity range from y(cm) to y(cm)+1 and a transverse momentum range of approximately 0.1 < p(T)/A < 0.5 GeV/c. We calculate coalescence scale factors B(A) from which we extract model dependent source dimensions and collective flow velocities. We also examine the dependences of the yields on baryon number, spin, and isospin of the produced nuclei.
10 pct most central collisions.
10 to 38 pct most central collisions.
38 to 66 pct most central collisions.
The dielectron yield in p + d and p + p collisions at a beam kinetic energy of 4.9 GeV has been measured using the Dilepton Spectrometer (DLS) at the Bevalac. The measured ratio of the yield in p + d to that in p + p collisions, 1.92±0.06, is in disagreement with the assumptions of model calculations applied to our ealier p +Be data, where it was found that p + n bremsstrahlung dominated other sources. While the measured ratio is consistent with a hadron-like origin of the dielectrons, the contributions of known hadronic decays are smaller than the measured yield from p + p collissions.
Background subtracted data uncorrected for acceptance.
Background subtracted data uncorrected for acceptance.
Dielectron production in p+d and p+p collisions at the beam kinetic energy of 4.9 GeV has been measured with the Dilepton Spectrometer. Features of the dielectron cross section have been studied with cuts on the mass and transverse momentum of the pairs. The spectra for several regions of phase space are presented as a function of the pair mass and transverse momentum.
Mass distribution.
Mass distribution.
Transverse momentum distribution.