abstract only
No description provided.
No description provided.
No description provided.
We report measured asymmetries as a function of polar scattering angle for the reactions p¯p→π−π+ and p¯p→p¯p, using a polarized proton target. The annihilation data, obtained at a p¯ momentum of 1.64 GeV/c, are the first asymmetry data to be collected for this channel. A fit of these data and published differential cross section data is made by a partial-wave expansion, and the results are compared with a previous analysis. The elastic scattering data, obtained at 1.64 and 2.55 GeV/c, are fitted with an eight-parameter strong-absorption model.
No description provided.
Results of measurements of the polarization parameter in K+p elastic scattering at 650, 700, 845, and 940 MeV/c are presented. Details of the measurements are described and results are compared with previous measurements and partial-wave parametrizations of the data. The implication of the existence of Z* resonances in light of these results is discussed.
No description provided.
We report measured values of the asymmetry in the elastic scattering of K+ mesons from polarized protons. The data were obtained at fourteen incident K+ momenta from 1.33 to 2.58 GeVc; the approximate angular range covered was −0.85<cosθKc.m.<0.9. We compare our results with other available measurements and note several significant differences.
No description provided.
No description provided.
No description provided.
Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter Ann in large- P⊥2 proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P⊥2=0.3 (GeV/c)2 at 13.3 GeV/c. At 18.5 GeV/c we found that Ann=(-2±16)% at P⊥2=4.7 (GeV/c)2, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P⊥2.
No description provided.
2.2 GeV point taken from Brown et al., PR D31(85) 3017.
No description provided.
None
No description provided.
No description provided.
No description provided.
Differential cross sections for elastic K + p scattering have been measured at nineteen momenta between 0.7 and 1.9 GeV/ c . The data represent between 10 thousand and 20 thousand elastic events at each momentum and cover a wide range of scattering angles ( −0.98 ≲ cos θ ∗ ≲ 0.95 ). A computer controlled system of scintillation counters and acoustic spark chambers was used to detect the elastic events. Various internal consistency checks indicate that the absolute normalization of the data is accurate to within 2–3%. The cross sections show a smooth transition from an isotropic angular distribution to a dominant forward peak over the range covered by the experiment. Phase-shift analyses including these results show little evidence for a direct-channel resonance, and fitting the results by t - and u -channel exchange processes alone gives a good fit.
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).