Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.
Per-nucleon cross section ratio for carbon to deuterium.
Per-nucleon cross section ratio for calcium to deuterium.
Per-nucleon cross section ratio for lead to deuterium.
The ratio of the deuteron to proton structure functions is measured at very small Bjorken x (down to 10–6) and for Q2>0.001 GeV2 from scattering of 470 GeV muons on liquid hydrogen and deuterium targets. The ratio F2n/F2p extracted from these measurements is found to be constant, at a value of 0.935±0.008±0.034, for x<0.01. This result suggests the presence of nuclear shadowing effects in the deuteron. The dependence of the ratio on Q2 is also examined; no significant variation is found.
F2(N) / F2(P) = 2F2(DEUT)/F2(P) - 1.
F2(N) / F2(P) = 2F2(DEUT)/F2(P) - 1. The systematic uncertainty in the Q**2 dependece is negligible as compared to the statistical uncertainty.
We detected 1–10 MeV neutrons at laboratory angles from 80° to 140° in coincidence with 470 GeV muons deep inelastically scattered from H, D, C, Ca, and Pb targets. The neutron energy spectrum for Pb can be fitted with two components with temperature parameters of 0.7 and 5.0 MeV. The average neutron multiplicity for 40<ν<400 GeV is about 5 for Pb, and less than 2 for Ca and C. These data are consistent with a process in which the emitted hadrons do not interact with the rest of the nucleus within distances smaller than the radius of Ca, but do interact within distances on the order of the radius of Pb in the measured kinematic range. For all targets the lack of high nuclear excitation is surprising.
The energy spectrum for neutrons emitted from a thermalized nucleus may be expressed as a multiplicity per unit energy d(M)/d(E)=(M/T**2)*E*exp(-E/T) in which E is the neutron energy, M is the total multiplicity (isotropic in the nuclear frame), and T is the nuclear temperature. A fit by the sum of two exponentials.
Nuclear transparencies measured in exclusive incoherent ρ0 meson production from hydrogen, deuterium, carbon, calcium, and lead in muon-nucleus scattering are reported. The data were obtained with the E665 spectrometer using the Fermilab Tevatron muon beam with a mean beam energy of 470 GeV. Increases in the nuclear transparencies are observed as the virtuality of the photon increases, in qualitative agreement with the expectations of color transparency.
No description provided.
The production ofK0, Λ and\(\bar \Lambda \) particles is studied in the E665 muon-nucleon experiment at Fermilab. The average multiplicities and squared transverse momenta are measured as a function ofxF andW2. Most features of the data can be well described by the Lund model. Within this model, the data on the K0/π± ratios and on the averageK0 multiplicity in the forward region favor a strangeness suppression factors/u in the fragmentation process near 0.20. Clear evidence for QCD effects is seen in the average squared transverse momentum ofK0 and Λ particles.
No description provided.
No description provided.
No description provided.
Fermilab Experiment-665 measured deep-inelastic scattering of 490 GeV muons off deuterium and xenon targets. Events were selected with a range of energy exchange ν from 100 GeV to 500 GeV and with large ranges of Q2 and xBj: 0.1 GeV2/c2<Q2<150 GeV2/c2 and 0.001<xBj<0.5. The fractional energy (z) distributions of forward-produced hadrons from the two targets have been compared as a function of the kinematics of the scattering; specifically, the kinematic region of ‘‘shadowing’’ has been compared to that of nonshadowing. The dependence of the distributions upon the order of the hadrons, determined by the fractional energies, has been examined as well; a strong degree of similarity has been observed in the shapes of the distributions of the different order hadrons. These z distributions, however, show no nuclear dependence, even in the kinematic region of shadowing.
Showing effect of shadowing in the ratios of cross sections.
Showing effect of shadowing in the ratios of cross sections.
Showing effect of shadowing in the ratios of cross sections.
Results on the production of charged hadrons in muon-deuteron and muon-xenon interactions are presented. The data were taken with the E665 spectrometer, which was exposed to the 490 GeV muon beam of the Tevatron at Fermilab. The use of a streamer chamber as vertex detector provides nearly 4π acceptance for charged particles. The μD data are compared with the μXe data in terms of multiplicity distributions, average multiplicities, forward-backward multiplicity correlations, rapidity and transverse momentum distributions and of two-particle rapidity correlations of charged hadrons. The data cover a range of invariant hadronic massesW from 8 to 30 GeV.
Results of negative binomial function fit to the multiplicity distribution of charged hadrons in muon-deuteron scattering. DISPERSION = SQRT(1/MULT + 1/K) is this dispersion of the scaled multiplicity Z = N/MULT.
Results of negative binomial function fit to the multiplicity distribution of charged hadrons in muon-xenon scattering. DISPERSION = SQRT(1/MULT + 1/K) is this dispersion of the scaled multiplicity Z = N/MULT.
Results of negative binomial fits to charged hadron multiplicity distributions in muon-deuteron interactions for backward and forward hemispheres of the hadronic cm.
We present results on the cross-section ratio for inelastic muon scattering on neutrons and protons as a function of Bjorken chi;. The data extend to χ values two orders of magnitude smaller than in previous measurements, down to 2×10 −5 , for Q 2 >0.01 GeV 2 . The ratio is consistent with unity throughout this new range.
No description provided.
No description provided.
The ratio of cross sections for inelastic muon scattering on xenon and deuterium nuclei was measured at very low Bjorken x (0.000 02<xBj<0.25). The data were taken at Fermilab experiment E-665 with a 490 GeV/c muon beam incident on liquid deuterium and gaseous xenon targets. Two largely independent analysis techniques gave statistically consistent results. The xenon-to-deterium per-nucleon cross-section ratio is constant at approximately 0.7 for xBj below 0.003.
Data using Electromagnetic Cuts.
Data using Hadron Requirement.