Date

Measurement and Analysis of the Reaction $\gamma \gamma \to \pi^+ \pi^- \pi^+ \pi^-$

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Lackas, W. ; et al.
Z.Phys.C 38 (1988) 521, 1988.
Inspire Record 252632 DOI 10.17182/hepdata.1916

We have measured the cross section of four charged pion production in photon-photon interactions in the invariant mass range 1.0≦Wγγ≦3.2 GeV and up toQ2=16 GeV2. For 1.2 GeV≦Wγγ≦1.7 GeV the process is dominated by ρ0ρ0 production with a rapid rise in cross section around 1.2 GeV, well below the nominal ρ0ρ0 threshold. The observed distributions in the two particle masses and in the production and decay angles are well described by an incoherent sum of the phase-space subprocesses γγ →ρ0ρ0, →ρ0π+π−, and →π+π−π+π−. A spin-parity analysis of the ρ0ρ0 system showsJP=2+ to dominate, although 0+ is also possible forWγγ≦1.4 GeV. Negative partity states are excluded.

12 data tables

Fractions of subprocesses from 3-parameter fit to the no-tag data.

Fractions of subprocesses from 2-parameter fit to the no-tag data in limited energy range. The Q=1R contribution is set equal to zero.

Fractions of subprocesses from 3-parameter fit to the single-tag data.

More…

High Mass Dimuon Production in anti-p n and pi- n Interactions at 125-GeV/c

Anassontzis, E. ; Katsanevas, S. ; Kiritsis, E. ; et al.
Phys.Rev.D 38 (1988) 1377, 1988.
Inspire Record 253413 DOI 10.17182/hepdata.23243

We have studied muon pairs with an invariant mass between 4 and 9 GeV/c2 produced in p¯N and π−N interactions at an incident momentum of 125 GeV/c. The experiment was performed at Fermilab using a tungsten target and a special beam enriched to contain 18% antiprotons. We compare differential distributions as functions of the dimuon invariant mass, Feynman x, transverse momentum, and decay angles of the dimuon to the predictions of the Drell-Yan model including QCD corrections. Quark structure functions for the p¯ and π− are extracted. Comparisons of the antiproton data to the Drell-Yan model are significant because the cross sections depend principally on the valence-quark structure functions which are accurately determined by deep-inelastic scattering measurements. The measured absolute cross section (integrated over positive Feynman x and all transverse momenta) is 0.106±0.005±0.008 nb/nucleon for the p¯N interaction and 0.107±0.003±0.009 nb/nucleon for the π−N interaction, where the quoted errors are statistical and systematic, respectively. Normalization (K) factors that are required to bring the naive Drell-Yan and first-order QCD predictions into agreement with the measurements are extracted, and the uncertainties involved in such comparisons are examined.

6 data tables

No description provided.

No description provided.

No description provided.

More…

THE STUDY OF THE NEUTRON STRANGE PARTICLES AND gamma QUANTUM PRODUCTION IN anti-d d INTERACTIONS AT 12-GeV/c

Batyunya, B.V. ; Boguslavsky, I.V. ; Bruncko, D. ; et al.
JINR-P1-87-802, 1987.
Inspire Record 253863 DOI 10.17182/hepdata.9417

None

9 data tables

No description provided.

No description provided.

No description provided.

More…

THE STUDY OF anti-n n INTERACTIONS AT 6.1-GeV/c

The Dubna-Bucharest-Yerevan-Kosice-Moscow-Prague-Sofiya collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Bruncko, D. ; et al.
Sov.J.Nucl.Phys. 48 (1988) 475, 1988.
Inspire Record 253864 DOI 10.17182/hepdata.9420

None

21 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of $D$(s)* - $D$(s) Mass Difference

The ARGUS collaboration Albrecht, H. ; Binder, U. ; Bockmann, P. ; et al.
Phys.Lett.B 207 (1988) 349-354, 1988.
Inspire Record 251558 DOI 10.17182/hepdata.29950

Using the ARGUS detector at DORIS, we observe the production of D ∗+ s mesons in e + e − annihilation through their subsequent decays to a D + s and a photon. Photons which convert in the beam pipe or drift chamber inner wall are used to obtain a high precision measurement of the D ∗+ s -D + s mass difference, while photons detected in the shower counters are used to determine the production cross section, and to provide an independent measurement of the D ∗+ s -D + s mass difference. The observed D ∗+ s - D + s mass difference is 142.5±0.8±1.5 MeV/ c 2 , and σ(e + e − →D ∗+ s X)·BR(D ∗+ s →D + s γ)(·BR(D + s →φπ + ) is 4.4±1.1±1.0 pb at 10.2 GeV. The width of the D ∗+ s is less than 4.5 MeV/ c 2 at 90% confidence level.

1 data table

Cross sections uncorrected for branching ratios.


A STUDY OF THE THREE AND FOUR PHOTON FINAL STATES PRODUCED IN e+ e- ANNIHILATION AT 35-GeV <= S**(1/2) <= 46.8-GeV

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Dainton, J.B. ; et al.
Phys.Lett.B 202 (1988) 154-160, 1988.
Inspire Record 251506 DOI 10.17182/hepdata.29990

The reactions e + e − →γγγ and e + e − →γγγγ have been studied at center-of-mass energies between 35 and 46.8 GeV with an integrated luninosity of about 130 pb −1 accumulated with the CELLO detector at PETRA. The measurements are compared to QED calculations up to third and fourth orders of perturbation theory. Excellent agreement is observed.

1 data table

No description provided.


Nuclear Target Effects in J/psi Production in 125-GeV/c anti-Proton and pi- Interactions

Katsanevas, S. ; Kourkoumelis, C. ; Markou, A. ; et al.
Phys.Rev.Lett. 60 (1988) 2121, 1988.
Inspire Record 252806 DOI 10.17182/hepdata.20104

The production of the Jψ resonance in 125-GeV/c p¯ and φ− interactions with Be, Cu, and W targets has been measured. The cross section per nucleon for Jψ production is suppressed in W interactions relative to the lighter targets, especially at large values of Feynman x, which is opposite to the expectation from the various explanations of the European Muon Collaboration effect. Models incorporating modifications of the gluon structure functions in heavy targets show qualitative agreement with the data.

3 data tables

No description provided.

No description provided.

No description provided.


A Measurement of Cross-sections for $^{16}$O Al and $^{16}$O Pb Interactions at 60-{GeV}/$c$ and 200-{GeV}/$c$ Per Nucleon

The NA36 collaboration Barnes, P.D. ; Blaes, R. ; Braun, H. ; et al.
Phys.Lett.B 206 (1988) 146-150, 1988.
Inspire Record 252004 DOI 10.17182/hepdata.6494

Cross sections are measured for 16 O collisions with A1 and Pb. Dependences on beam momentum and atomic number are compared with data obtained at much lower beam momenta.

4 data tables

MODEL DEPENDENT ESTIMATION.

No description provided.

No description provided.

More…

$D$ Meson Production From 400-{GeV}/$c p p$ Interactions. Evidence for Leading Diquarks?

The LEBC-EHS collaboration Aguilar-Benitez, M. ; Allison, W.W.M. ; Bailly, J.L. ; et al.
Phys.Lett.B 201 (1988) 176, 1988.
Inspire Record 252001 DOI 10.17182/hepdata.49611

Results of fitting the differential distributions in x F and p T 2 of D mesons produced in 400 GeV/ c p-p interactions to the form d 2 σ d x F d p T 2 ∝(1−x F ) n exp [−(p T 2 /〈p T 2 〉)] are discussed. The D + distribution is found to be relatively hard [ n =3.1±0.8〈 P t 2 〉=1.32±0.27 (GeV/ c ) 2 ] and the D̄ 0 distribution relatively soft [ n =8.1±1.9,〈 p T 2 〉=0.62±0.14 (GeV/ c ) 2 ] compared to the average for all D's [ n =4.9±0.5,〈 p T 2 〉=0.99±0.10 (GeV/ c ) 2 ]. It is suggested that these distributions could reflect contribution of leading di-quarks in pp collisions. Comparison is made with evidence for leading quarks in charm production in 360 GeV/ cπ − p interactions.

1 data table

The invariant (C=INV) and non-invariant (C=NON-INV) distributions are fitted to (1-XL)**POWER. Pt distribution is fitted to EXP(-PT**2/SLOPE).


Experimental Study of $B \bar{B}$ Production in $\pi^-$ U Interactions at 320-{GeV} Energy

The WA78 collaboration Catanesi, M.G. ; Muciaccia, M.T. ; Natali, S. ; et al.
Phys.Lett.B 202 (1988) 453-457, 1988.
Inspire Record 252002 DOI 10.17182/hepdata.49588

A sample of 29 gu + υ + 35 υ − υ − coming from B B decay have been observed in π -U interactions at 320 GeV energy. The experimental distributions and the total cross section are found to be in good agreement with QCD predictions. The effect of B 0 B 0 mixing is discussed.

2 data tables

BEAUTY INCLUSIVE SPECTRA WAS ASSUMED MN FORM : E*D(SIG)/D(X)/D(PT**2) = EXP(-0.9*PT**2)*(1-ABS(X))**A. THE BEST FIT FOR A IS A = 2.5.

No description provided.