The proton Compton effect has been studied in the region between the threshold for pion photoproduction and the Δ(1232). The measurements were performed using bremmstrahlung from the high duty-factor electron beam available at the Saskatchewan Accelerator Laboratory. Elastically scattered photons were detected with an energy resolution of approximately 1.5% using a large NaI total absorption scintillation detector. Differential cross sections were measured for photon energies in the range 136 MeV≤Eγ≤289 MeV and for angles in the range 25°<θlab<135°. The angular distributions and the excitation functions derived from these data are in agreement with recent theoretical analyses. The results were interpreted within a formalism based in part on dispersion relations to obtain model-dependent estimates of the electric and magnetic polarizabilities, α¯ and β¯. We find, subject to the dispersion sum rule constraint α¯+β¯=(14.2±0.5)×10−4 fm3, that α¯=(9.8±0.4±1.1)×10−4 fm3 and β¯=(4.4∓0.4∓1.1)×10−4 fm3, which are consistent with the best previous measurements.
Axis error includes +- 3/3 contribution (DUE TO THE CALIBRATION).
Axis error includes +- 3/3 contribution (DUE TO THE CALIBRATION).
Axis error includes +- 3/3 contribution (DUE TO THE CALIBRATION).
Angular distributions for photon scattering from C12 and He4 have been measured using continuous wave bremsstrahlung from the Saskatchewan Accelerator Laboratory pulse stretcher ring. Data for carbon were taken at 158.8, 195.2, 197.2, 247.2, and 290.2 MeV end-point energies, and for helium were taken at an end-point energy of 158.8 MeV. A large NaI(Tl) gamma ray spectrometer with 1.7% resolution was used to detect the scattered photons at laboratory scattering angles ranging from 20° to 150°. The excellent energy resolution of the NaI detector allowed a separation of elastic from inelastic photon scattering for the first time at these energies. The angular distributions for elastic scattering are in only fair agreement with delta-hole theory and theory based on the optical theorem at forward angles, and completely disagree with theory at backward angles. Measured cross sections for inelastic scattering leading to the 4.43 MeV state in carbon are small compared to the elastic scattering at forward angles, but are dominant at backward angles. This experiment is the first to separate elastic from inelastic photon scattering at these energies.
ROI=4.43 MEV.
ROI=4.43 MEV.
ROI=4.43 MEV.
Cross sections for elastic Compton scattering from the deuteron were measured over the laboratory angles 35-150 deg. Tagged photons in the laboratory energy range 84-105 MeV were scattered from liquid deuterium and detected in the large-volume Boston University NaI (BUNI) spectrometer. Using the calculations of Levchuk and L'vov, along with the measured differential cross sections, the isospin-averaged nucleon polarizabilities in the deuteron were estimated. A best-fit value of (alpha-beta) = 2.6+/-1.8 was determined, constrained by dispersion sum rules. This is markedly different from the accepted value for the proton of (alpha-beta) = 10.0+/-1.5+/-0.9.
No description provided.
Neutron polarizability is evaluated from the deuteron data.
No description provided.
The inclusive cross section for the production of charmed D∗± mesons in two-photon processes is measured with the AMY detector at the TRISTAN e+e− collider. D∗± mesons are identified from the distribution of charged-particle transverse momenta relative to the jet axis. A data sample corresponding to an integrated luminosity of 176 pb−1 at a center-of-mass energy of 58 GeV is used to determine a cross section σ(e+e− → e+e−D∗±X) = 270 ± 49(stat) ± 38(syst) pb. The results are compared with theoretical expectations based on the Vector Meson Dominance, direct quark-parton model, and resolved photon processes.
No description provided.
Reduced acceptance region to compare with the TOPAZ results.
The forward-backward asymmetry in e + e − → b b at s = 57.9 GeV and the b-quark branching ratio to muons have been measured using neural networks. Unlike previous methods for measuring the b b forward-backward asymmetry where the estimated background from c -quark decays and other sources are subtracted, here events are categorized as either b b or non- b b events by neural networks based on event-by-event characteristics. The determined asymmetry is −0.429 ± 0.044 (stat) ± 0.047 (sys) and is consistent with the prediction of the standard model. The measured B B mixing parameter is 0.136 ± 0.037 (stat) ± 0.040 (sys) ± 0.002 (model) and the measured b-quark branching ratio to muons is 0.122 ± 0.006 (stat) ± 0.007 (sys).
.
A study of e + e − annihilations into final states containing a single energetic photon with no accompanying particles is made at a center of mass energy of 57.8 GeV. The measured cross section is consistent with expectations from standard model processes and is used to set limits on the masses of the scalar electron and photino particles predicted by supersymmetry theories. If the photino is assumed to be massless, the 90% confidence level lower limit on the mass of the degenerate scalar electron is 65.5 GeV. If the results of all the single photon experiments are combined, this lower limit increases to 79.3 GeV.
No description provided.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and
No description provided.
No description provided.
No description provided.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.