The experimental data on d-d collisions at 4.3, 6.3 and 8.9 GeV/ c , exhibiting the two-peak structure in the high-momentum parts of the secondary deuteron spectra at momentum transfers | t | ≈ 0.4–0.8 (GeV/ c ) 2 , are presented. An analysis of the results in terms of the multiple nucleon-nucleon scattering model is given. Some conclusions about the mechanism of the elastic and quasielastic d-d scattering at the above-mentioned momentum transfers are made.
No description provided.
No description provided.
None
No description provided.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
We have measured the analyzing power A y in n-d elastic scattering at 67.0 MeV. The experiment was based on the detection of recoil deuterons, allowing for a precise measurement of the backward angular range. The results are in good agreement with recent three-nucleon calculations which are based on the Paris and Bonn NN potentials.
No description provided.
We have measured the polarization parameter in neuton-proton charge-exchange scattering for incident neutron momenta of 2-12 GeVc and 0.01<~|t|<~1.0 (GeVc)2. Results based on 300 000 events show a negative polarization whose magnitude increases monotonically with |t| approaching 60% for |t|∼0.6 and which has little energy dependence.
No description provided.
We report the first observation of diffractively produced open charm in 800−GeV/c pp collisions of the type pp→pD*X. We measure cross sections of σdiff(D*+)=(0.185±0.044±0.054)μb and σdiff(D*−)=(0.174±0.034±0.029)μb. Our measurements are based on 4.3×109 events recorded by FNAL E690 in the fixed-target run of 1991. We compare our results with previous fixed-target charm experiments.
No description provided.
We report a measurement of the negative pion electromagnetic form factor in the range of space-like four-momentum transfer 0.014 < q 2 < 0.122 (GeV/ c ) 2 . The measurement was made by the NA7 collaboration at the CERN SPS, by observing the interaction of 300 GeV pions with the electrons of a liquid hydrogen target. The form factor is fitted by a pole form with a pion radius of 〈r 2 〈 1 2 = 0.657 ± 0.012 fm.
Errors are statistical only.
The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/ c ) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar results to the naive pole form, and conclude 〈r 2 π 〉 = 0.438±0.008 fm 2 .
No description provided.
The Sigma^- mean squared charge radius has been measured in the space-like Q^2 range 0.035-0.105 GeV^2/c^2 by elastic scattering of a Sigma^- beam off atomic electrons. The measurement was performed with the SELEX (E781) spectrometer using the Fermilab hyperon beam at a mean energy of 610 GeV/c. We obtain
Total systematic errors are given.
Measurements of the pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.8 MeV over the angular range 4.5°–17.5° have been carried out. The statistical accuracy is approximately ±0.01 for Amn and ±0.004 for Ay, while the corresponding scale factor uncertainties are 2.4% and 1.3%, respectively. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization (Q=0.79) is switched in sign and in direction (x,y,z) every 2 s by reversing a weak guide field (about 0.3 mT). The forward-scattered protons are detected in two sets of wire chambers and a scintillator, while recoil protons are detected in coincidence with the forward protons by silicon strip detectors placed 5 cm from the proton beam. The background rate from scattering by the walls of the target cell is (0.2±0.2)% of the good event rate. Analysis methods and comparisons with pp potential models and pp partial wave analyses are described.
No description provided.