We have studied the transverse-momentum ($p_{\rm T}$) dependence of the inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, in three center-of-mass rapidity ($y_{\rm cms}$) regions, down to zero $p_{\rm T}$. Results in the forward and backward rapidity ranges ($2.03 < y_{\rm cms} < 3.53$ and $-4.46 <y_{\rm cms}< -2.96$) are obtained by studying the J/$\psi$ decay to $\mu^+\mu^-$, while the mid-rapidity region ($-1.37 < y_{\rm cms} < 0.43$) is investigated by measuring the ${\rm e}^+{\rm e}^-$ decay channel. The $p_{\rm T}$ dependence of the J/$\psi$ production cross section and nuclear modification factor are presented for each of the rapidity intervals, as well as the J/$\psi$ mean $p_{\rm T}$ values. Forward and mid-rapidity results show a suppression of the J/$\psi$ yield, with respect to pp collisions, which decreases with increasing $p_{\rm T}$. At backward rapidity no significant J/$\psi$ suppression is observed. Theoretical models including a combination of cold nuclear matter effects such as shadowing and partonic energy loss, are in fair agreement with the data, except at forward rapidity and low transverse momentum. The implications of the p-Pb results for the evaluation of cold nuclear matter effects on J/$\psi$ production in Pb-Pb collisions are also discussed.
$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the backward rapidity range (-4.46<$y_{\rm cms}$<-2.96). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.
$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the mid-rapidity range (-1.37<$y_{\rm cms}$<0.43). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.
$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the forward rapidity range (2.03<$y_{\rm cms}$<3.53). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.
We measure the forward-backward asymmetry in the production of $\Lambda_b^0$ and $\overline \Lambda_b^0$ baryons as a function of rapidity in $p \overline p $ collisions at $\sqrt s =1.96$ TeV using $10.4$ fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. The asymmetry is determined by the preference of $\Lambda_b^0$ or $\overline \Lambda_b^0$ particles to be produced in the direction of the beam protons or antiprotons, respectively. The measured asymmetry integrated over rapidity $y$ in the range $0.1<|y|<2$ is $A=0.04 \pm 0.07 {\rm (stat)} \pm 0.02 {\rm (syst)}$.
Efficiencies $\epsilon$, averaged values of background-subtracted transverse momenta $\left< p_T\right>$, backward and forward fitted yields for the signal $N(B)$ and $N(F)$, forward-backward asymmetries $A$, and cross-section ratios $R$ in four intervals of rapidity. Uncertainties on $\left< p_T\right>$, $N(B)$ and $N(F)$ are statistical only. Uncertainties on $\epsilon$ arise from the statistical precision of the simulated event samples.
The ratio of the production cross sections for W and Z bosons in association with jets has been measured in proton-proton collisions at $\sqrt{s}$ = 7 TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is based on the entire 2011 dataset, corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Inclusive and differential cross-section ratios for massive vector bosons decaying to electrons and muons are measured in association with jets with transverse momentum $p_T$ > 30 GeV and jet rapidity $|y|$ < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.
Distribution of inclusive jet multiplicity.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.
Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/c.
Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in EMCal triggered events in the electron transverse momentum range 4.5-6 GeV/c.
Relative beauty contribution to the heavy-flavour electron yield obtained with the method based on the track impact parameter.
The $p_{\rm T}$-differential production cross sections of the prompt charmed mesons $D^0$, $D^+$, $D^{*+}$ and $D_{\rm s}^{+}$ and their charge conjugate in the rapidity interval $-0.96 < y_{\rm cms} < 0.04$ were measured in p-Pb collisions at a centre-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The nuclear modification factor $R_{\rm pPb}$, quantifying the D-meson yield in p-Pb collisions relative to the yield in pp collisions scaled by the number of binary nucleon-nucleon collisions, is compatible within the 15-20% uncertainties with unity in the transverse momentum interval $1 < p_{\rm T} < 24$ GeV/$c$. No significant difference among the $R_{\rm pPb}$ of the four D-meson species is observed. The results are described within uncertainties by theoretical calculations that include initial-state effects. The measurement adds experimental evidence that the modification of the momentum spectrum of D mesons observed in Pb-Pb collisions with respect to pp collisions is due to strong final-state effects induced by hot partonic matter.
pT-differential cross section of prompt D0 mesons measured in p-Pb collisions in the rapidity interval -0.96<y_cms<0.04.
pT-differential cross section of prompt D+ mesons measured in p-Pb collisions in the rapidity interval -0.96<y_cms<0.04.
pT-differential cross section of prompt D*+ mesons measured in p-Pb collisions in the rapidity interval -0.96<y_cms<0.04.
The transverse momentum ($p_{\mathrm T}$) distribution of primary charged particles is measured at midrapidity in minimum-bias p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ALICE detector at the LHC in the range $0.15<p_{\mathrm T}<50$ GeV/$c$. The spectra are compared to the expectation based on binary collision scaling of particle production in pp collisions, leading to a nuclear modification factor consistent with unity for $p_{\mathrm T}$ larger than 2 GeV/$c$, with a weak indication of a Cronin-like enhancement for $p_{\rm T}$ around 4 GeV/$c$. The measurement is compared to theoretical calculations and to data in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV.
Transverse momentum distributions of charged particles in minimum-bias (NSD) p-Pb collisions for different pseudorapidity ranges.
The histogram represents the reference spectrum (cross section scaled by the nuclear overlap function, T(pPb)) in inelastic pp collisions, determined in |eta(cms)| < 0.8.
The ratio of spectra in p-Pb at backward pseudorapidities to that at |eta(cms)| < 0.3.
The process pp--> W + J/psi provides a powerful probe of the production mechanism of charmonium in hadronic collisions, and is also sensitive to multiple parton interactions in the colliding protons. Using the 2011 ATLAS dataset of 4.5 fb-1 of sqrt{s} = 7 TeV pp collisions at the LHC, the first observation is made of the production of W + prompt J/psi events in hadronic collisions, using W-->mu+nu and J/psi-->mu+mu. A yield of 27.4+7.5-6.5 W + prompt J/psi events is observed, with a statistical significance of 5.1 sigma. The production rate as a ratio to the inclusive W boson production rate is measured, and the double parton scattering contribution to the cross section is estimated.
The W + prompt J/psi to inclusive W production cross-section ratio (times 10^6) in the J/psi fiducial region (Fiducial), after correction for J/psi acceptance (Inclusive), and after subtraction of the double parton scattering component (DPS-subtracted). The first uncertainty is statistical, the second is systematic, and the third/fourth (where applicable) is the uncertainty up/down due to spin-alignment.
The inclusive (SPS+DPS) cross-section ratio (times 10^6) as a function of J/psi transverse momentum, along with the estimate of the DPS contribution. For the inclusive result, the first uncertainty is statistical, second uncertainty is systematic, and the third uncertainty is the possible variation due to spin-alignment.
The inclusive (SPS+DPS) cross-section ratio (times 10^6) as a function of J/psi transverse momentum under the LONGITUDINAL spin-alignment hypothesis. The first uncertainty is statistical and the second uncertainty is systematic.
Transverse momentum spectra of $\pi^{\pm}$, $\rm K^{\pm}$ and p($\bar{\rm p}$) up to $p_{\rm T}$ = 20 GeV/$c$ at mid-rapidity in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV have been measured using the ALICE detector at the Large Hadron Collider. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at $p_{\rm T} \approx 3 GeV/c$ in central Pb-Pb collisions. Below the peak, $p_{\rm T}$ < 3 GeV/$c$, both ratios are in good agreement with hydrodynamical calculations, suggesting that the peak itself is dominantly the result of radial flow rather than anomalous hadronization processes. For $p_{\rm T}$ > 10 GeV/$c$ particle ratios in pp and Pb-Pb collisions are in agreement and the nuclear modification factors for $\pi^{\pm}$, $\rm K^{\pm}$ and $\rm p$($\bar{\rm p}$) indicate that, within the systematic and statistical uncertainties, the suppression is the same. This suggests that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets.
Invariant yields of identified pions in central and peripheral Pb-Pb collisions, together with the unscaled pp reference yields.
Invariant yields of identified kaons in central and peripheral Pb-Pb collisions, together with the unscaled pp reference yields.
Invariant yields of identified protons in central and peripheral Pb-Pb collisions, together with the unscaled pp reference yields.
The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range $|\eta|<0.8$ at different collision centralities and as a function of transverse momentum, $p_{\rm T}$, out to $p_{\rm T}=20$ GeV/$c$. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for $p_{\rm T}>8$ GeV/$c$. The small $p_{\rm T}$ dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to $p_{\rm T}=8$ GeV/$c$. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least $p_{\rm T}=8$ GeV/$c$ indicating that the particle type dependence persists out to high $p_{\rm T}$.
Elliptic flow (v2) estimated with Event Plane method (with eta gap of 2.0) measured for unidentified charged particles as a function of transverse momentum for various centrality classes.
Elliptic flow (v2) estimated with four-particle cumulants measured for unidentified charged particles as a function of transverse momentum for various centrality classes.
Triangular flow (v3) estimated with Event Plane method (with eta gap of 2.0) measured for unidentified charged particles as a function of transverse momentum for various centrality classes.
Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of rho^0 and direct pi^+pi^- photoproduction in ultra-peripheral relativistic heavy ion collisions at sqrt(s_{NN})=200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of sigma(AuAu) -> Au^*Au^*rho^0 = 530 pm 19 (stat.) pm 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho^0 transverse momentum spectrum (p_{T}^2) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus/ we find sigma_{inc}/sigma_{coh} = 0.29 pm 0.03 (stat.) pm 0.08 (syst.). The ratio of direct pi^+pi^- to rho^0 production is comparable to that observed in gamma p collisions at HERA, and appears to be independent of photon energy. Finally, the measured rho^0 spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.
ZDC spectra obtained with the minimum bias sample after the $\rho^{0}$ selection cuts are applied, and fit with three Gaussians. The east ZDC is shown on the left and the west ZDC is shown on the right. The ratio of numbers of candidates in the West ZDC of 1n:2n:3n is 1: 0.48 $\pm$ 0.03: 0.42 $\pm$ 0.03, while in the East ZDC, we find 1n:2n:3n is 1: 0.46 $\pm$ 0.03: 0.42 $\pm$ 0.03.
ZDC spectra obtained with the minimum bias sample after the $\rho^{0}$ selection cuts are applied, and fit with three Gaussians. The east ZDC is shown on the left and the west ZDC is shown on the right. The ratio of numbers of candidates in the West ZDC of 1n:2n:3n is 1: 0.48 $\pm$ 0.03: 0.42 $\pm$ 0.03, while in the East ZDC, we find 1n:2n:3n is 1: 0.46 $\pm$ 0.03: 0.42 $\pm$ 0.03.
The invariant mass distribution for the coherently produced $\rho^{0}$ candidates from the minimum bias sample with the cut on the $\rho^{0}$ transverse momentum $p_{T}$ < 150 MeV/c. The hatched area is the contribution from the combinatorial background. The solid line corresponds to Eq. 3 which encompasses the Breit-Wigner (dashed), the mass independent contribution from the direct $\pi^{+}\pi^{-}$ production (dash-dotted), and the interference term(dotted).