We have searched for direct photons of low PT (≤1.0 GeV/c) at θc.m.=90° in pp collisions at √s =63 GeV. We used two independent methods: direct detection in NaI crystals and conversion to e+e− pairs. No signal is observed; the photon spectrum is well described by the decay of hadrons. The result is consistent with a direct low-PT photon signal reported at √s =12 GeV, but excludes a rapid growth of soft-photon production with √s .
No description provided.
We report cross sections for the process γγ→pp¯ at center-of-mass energies W from 2.0 to 2.8 GeV. These results have been extracted from measurements of e+e−→e+e−pp¯ at an overall center-of-mass energy of 29 GeV, using the TPC/Two-Gamma facility at the SLAC storage ring PEP. Cross sections for the untagged mode [both photons nearly real] are shown to lie well above QCD predictions. Results are also presented for the single-tagged mode [one photon in the range 0.16<Q2<1.6 (GeV/c)2].
Data read from graph in preprint. Statistical errors only.
Data read from graph. Statistical errors only.
Data read from graph. Statistical errors only.
The production of\(\bar D\) mesons in neutroncarbon interactions at 40–70 GeV/c has been investigated. The\(\bar D\) mesons were detected via the hadronic decay modes\(\bar D^0\to K^{* + } (892)\pi ^ -\) andD−→K*+(892)π−π−. In the kinematical regionxF>0.5 andpT<1 GeV/c the following inclusive cross sections were measured:\(\sigma _{\bar D^0 }= (28 \pm 14)\mu b\) and\(\sigma _{D^ -}= (28 \pm 13)\mu b\) per carbon nucleus. The invariant longitudinal momentum spectra can be described by (1−x)N with\(N_{\bar D^0 }= 1.1 \pm 0.5 \pm 0.4\) and\(N_{D^ -}= 0.8 \pm 0.4 \pm 0.4\) The transverse momentum spectra were parametrized by exp (−BpT2) with\(B_{\bar D^0 }= (1.2_{ - 0.9}^{ + 1.1} )({{GeV} \mathord{\left/ {\vphantom {{GeV} c}} \right. \kern-\nulldelimiterspace} c})^{ - 2} \) and\(B_{D^ -}= (1.8_{ - 1.0}^{ + 1.3} )({{GeV} \mathord{\left/ {\vphantom {{GeV} c}} \right. \kern-\nulldelimiterspace} c})^{ - 2} \).
No description provided.
No description provided.
No description provided.
We have measured the W transverse momentum distribution ( p T W ) using a sample of 323 W → eν and W → μν events produced in proton-antiproton collisions at the CERN collider. In the present letter we extend the study of the distribution up to p T W ∼- m W and compare to leading and higher order QCD. This comparison is a precise test of QCD with hadron colliders and the inclusive spectrum gives good agreement over a large range of p T W . However we observed two events at very large p T W (∼- 100 GeV/ c ) in which the W candidate recoils against an energetic di-jet system. Both events have a very large missing transverse energy and a jet-jet mass compatible with the W mass. In a separate analysis, a topologically similar event has been observed in which a high-mass di-jet system is balanced by a large missing transverse energy which could be interpreted as Z 0 → ν ν decay. We cannot easily explain these three events in terms of explicit second-order QCD calculations. However we cannot exclude at this stage the possibility that they are the result of non-gaussian fluctuations in the response of UA1 calorimetry or a statistical fluctuation in the data.
THESE NUMBERS WRE READ OFF FIG 1A.
The asymmetry ANN for pp elastic scattering has been measured at 800 and 650 MeV in the region of Coulomb-nuclear interference. The data have been analyzed to extract the real part of a spin-spin scattering amplitude. Results are compared with the predictions of forward dispersion relations. They disagree significantly at 650 MeV.
No description provided.
No description provided.
None
Mean charged multiplicity for NSD events extrapolated to the full phase space.
Charged particle pseudorapidity density for NSD events at pseudorapidiy = 0.
Corrected charged particle multiplicity distribution for NSD events.
In the first holographic bubble chamber experiment — the HOBC experiment — we have accumulated a total of 40000 holograms with particle interactions. We have determined the total charm pair cross section inpN collisions to be 23.3−7.7+10 μb and 3.6−1.7+2.3 μb for 360 and 200 GeV/c incident protons respectively. We have assumed a linear dependence of the cross section on the atomic number of the target. This experiment has demonstrated the feasibility of holographic recording in small bubble chambers. Assuming that the charm cross section can be described by the standard QCD factorized expression with gluon fusion and quark-antiquark annihilation, we have used our measured charm cross sections with other measurements to determine the effective charmed quark mass to be 1.8−0.35+0.25 GeV/c2. TheK factor, which describes the importance of the higher order corrections, is calculated to be 9.8−6.9+12.5 (See noted added in proof.)
No description provided.
Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.
Clear evidence is presented for the production of an Ω ∗− resonance of mass 2253±13 MeV/ c 2 and width 81±38 MeV/ c 2 in K − p interactions at 11 GeV/ c . The state is observed in the Ξ (1530)K̄ decay mode, and the corresponding inclusive cross section is estimated to be 630±180 nb. Comparisons are made with theoretical predictions and with similar states observed inhyperon beam induced data.
No description provided.
This paper presents experimental results on π + π − production threshold from the collision of quasi-real photons. The data, obtained at the e + e − collider DCI, are a combination of the results from the DM1 and DM2 experiments. Using the e + e − and π + π − production for normalization and cross-checks, we observe a pion pair yield at low invariant mass ( W < 500 MeV/ c 2 ) which is approximately twice the one expected from Born terms.
Data read from graph.
Data read from graph.