We present the first data on photon-photon annihilation into hadrons for CM energies > 1 GeV obtained with the detector PLUTO at the e + e − storage ring PETRA. Cross sections are extracted using an inelastic eγ scattering formalism. The results are compared to expectations from Regge-like models.
DEPENDENCE OF CROSS SECTION FOR ELECTRON-PHOTON SCATTERING (ANALOGOUS TO HAND'S FORMULA) ON VISIBLE HADRONIC ENERGY, CALCULATED BY TAKING PION MASSES FOR ALL CHARGED PARTICLES.
We have measured the production cross section for K s 0 in e + e − annihilation from 3.6 to 5.0 GeV center of mass energy. A substantial increase of the K s 0 yield is observed around 4 GeV in qualitative agreement with the charm hypothesis.
No description provided.
The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.38 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.
We have measured the crosss section for the reaction e + e − → 4 π ± in the energy range 1 2–3.0 GeV.No statistically significant evidence for a new vector meson in the ϱ″ region is found.
No description provided.
We have observed 1085 events of the type e + e − → hadrons, in the total centre-of-mass energy range √ s = 1.2 to 3.0 GeV. The energy dependence of the total annihilation cross-section, parametrized in the form σ ( e + e − → hadrons ) = A · s n , is measured to be n = -(1.54 −0.29 +0.17 ) in the above energy range.
RESULTS USING THE (AP P) MODEL WITH PHASE-SPACE CORRECTIONS.
R AS CALCULATED FROM THE TOTAL HADRONIC CROSS SECTION USING THE (AP P) MODEL.
TOTAL CROSS SECTIONS OBTAINED USING THE QUASI-MODEL-INDEPENDENT METHOD ARE TABULATED HERE.
The differential cross section has been measured for the reaction γ +p→ π o + p at the Bonn 2.5 GeV electron synchrotron in the energy range from 0.55 to 2.2 GeV at a c.m.angle of 120 degrees.
No description provided.
The preliminary results of measurements of differential cross-sections for the photo-production of neutral pions from protons are given. The data fall in the range 60–125 degrees in pion c.m. angle and 350 to 850 MeV in photon energy.
Axis error includes +- 10/10 contribution (ESTIMATED ERROR DUE TO PRELIMINARY NATURE OF DATA).
Axis error includes +- 10/10 contribution (ESTIMATED ERROR DUE TO PRELIMINARY NATURE OF DATA).
Axis error includes +- 10/10 contribution (ESTIMATED ERROR DUE TO PRELIMINARY NATURE OF DATA).
The recoil proton polarization of proton Compton scattering (γp→γp) was measured in the photon energy range from 500 MeV to 1000 MeV atθ∗=100° and from 400MeV to 800 MeV atθ∗=130°. A recoil proton and a scattered photon were detected in coincidence with a magnetic spectrometer and a photon detector. The recoil proton polarization was measured with a carbon polarimeter. The results are compared with a phenomenological analysis based on an isobar model and a dynamical analysis based on the dispersion relation.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The Sigma^- mean squared charge radius has been measured in the space-like Q^2 range 0.035-0.105 GeV^2/c^2 by elastic scattering of a Sigma^- beam off atomic electrons. The measurement was performed with the SELEX (E781) spectrometer using the Fermilab hyperon beam at a mean energy of 610 GeV/c. We obtain <r^2> = (0.61 +/- 0.12 (stat.) +/- 0.09 (syst.)) fm^2. The proton and pi^- charge radii were measured as well and are consistent with results of other experiments. Our result agrees with the recently measured strong interaction radius of the Sigma^-.
Total systematic errors are given.