We have measured the differential cross section for π − p elastic scattering at eight incident momenta, 2.06, 2.26, 2.45, 2.65, 2.86, 3.05, 3.26 and 3.48 GeV/ c , in a wide range of c.m. scattering angle between 15° and 160°. A pronounced dip-bump structure has been found at large angles. Details of the structure are quantitatively described as functions of the incident momentum.
No description provided.
No description provided.
No description provided.
The reaction γ p→K + K − p has been investigated with photons in the energy range of 20< E γ <36 GeV and with K + K − pairs in the mass range of M K + K − <2.0 GeV. The production of the φ(1019) contributes with a cross section σ ( γ p → φ p) × BR( φ →K + K − ) = 240±6 nb with an additional systematic error of ±20 nb. In the higher mass range of 1.05< M K + K − <2.0 GeV the production of K + K − pairs yields a cross section σ ( γ p→K + K − p) = 160±8 nb with an additional systematic error of +40 −30 nb.
No description provided.
K+ K- PRODUCTION ABOVE PHI MASS.
No description provided.
Measurements of the production inp-BeO collisions of charged baryons and antibaryons with strangeness between −3 and +3 at\(\sqrt s= 21.2GeV\)x=0.48, andpT=600MeV/c are reported. The experimental results can be interpreted within the framework of a simple proton fragmentation-recombination model.
No description provided.
No description provided.
No description provided.
We have measured the reactions e + e − → e + e − → μ + μ − and e + e − → γγ at c.m. energies between 12 and 31.6 GeV. Excellent agreement with the predictions of QED has been found, resulting in cut off parameters Λ + > 112 GeV and Λ − > 139 GeV for the first process and Λ + > 34 GeV and Λ − > 42 GeV (95% c.1.) for the last one. A limit on the Weinberg angle of sin 2 θ W < 0.55 (95% c.1.) has been obtained.
SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.
SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.
SIG(C=QED) QED predictions for the cross sections. Only statistical errors are given.
Inclusive K 0 -production has been measured in e + e - annihilation at a center of mass energy of about W = 30 GeV. The ratio of K 0 + K 0 production to μ + μ - production is R K 0 = 5.6 ± 1.1 (statist. error) ± 0.8 (system.error) This value is about a factor of three higher than R K 0 at W = 7 GeV. The cross sections ( s / β ) d σ /d x is consistent with a scaling behaviour.
No description provided.
DIFFERENTIAL CROSS SECTION.
INVARIANT CROSS SECTION.
We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.
No description provided.
No description provided.
No description provided.
Production of pions, kaons, protons and antiprotons has been studied in e + e − annihilations at 12 and 30 GeV centre of mass energy using time of flight techniques. The fractional yield of charged kaons and baryons appears to rise with outgoing particle momentum. At our highest energy at least 40% of e + e − annihilations into hadrons are estimated to contain baryons.
No description provided.
No description provided.
No description provided.
We have observed high mass resonances with mass above 1.5 GeV in pp interactions at 405 GeV/ c . We obtain cross sections 13.2 ± 2.9, 5.1 ± 2.0, 2.5 ± 1.5 and 0.27 ± 0.18 mb for ϱ 0 , f, g 0 , and h meson production, respectively. The invariant x and p T 2 distributions for produced resonances are analysed. A relative comparison of the average 〈 p T 〉 distribution as a function of resonance masses with that for μ + μ − pair production shows remarkable similarity.
ONLY INCLUSIVE CROSS SECTIONS ARE GIVEN IN THE ORIGINAL PAPER. MULTIPLICITY VALUES ARE OBTAINED BY DIVIDING THE CORRESPONDING CROSS SECTION BY INELASTIC P P 32.0+-1.0 MB ONE ACCORDING TO PR D20, 37.
With use of the LENA detector at the DORIS e+e− storage ring, the hadronic cross section and the μ-pair decay branching ratio of the ϒ(9.46) resonance have been measured. Γee=1.23±0.10 (±0.14) keV, Bμμ=[3.5±1.4 (±0.4)]%, and Γtot=35−10+25 ({+9}{−7}) keV have been obtained. The first set of errors gives the statistical uncertainty. The numbers in parentheses represent systematic errors arising from the uncertainty in the total hadronic cross section.
No description provided.
Additional systematic uncertainty 25% not included.