A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-20-014, 2024.
Inspire Record 2760468 DOI 10.17182/hepdata.145997

A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H $to$ bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B $\to$ bH and 100% B $\to$ bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.

23 data tables

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbH channel.

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbZ channel.

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bZbZ channel.

More…

A search for bottom-type, vector-like quark pair production in a fully hadronic final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 112004, 2020.
Inspire Record 1812970 DOI 10.17182/hepdata.99690

A search is described for the production of a pair of bottom-type vector-like quarks (VLQs), each decaying into a b or $\mathrm{\bar{b}}$ quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb$^{-1}$. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in the events. Since the two jets produced in the decay of a highly Lorentz-boosted Higgs or Z boson can merge to form a single jet, nine independent analyses are performed, categorized by the number of observed jets and the reconstructed event mode. No signal in excess of the expected background is observed. Lower limits are set on the VLQ mass at 95% confidence level equal to 1570 GeV in the case where the VLQ decays exclusively to a b quark and a Higgs boson, 1390 GeV for when it decays exclusively to a b quark and a Z boson, and 1450 GeV for when it decays equally in these two modes. These limits represent significant improvements over the previously published VLQ limits.

66 data tables

Measured values of the trigger efficiencies for events with $\HT > 1350\GeV$. The uncertainties are statistical only.

Reconstructed VLQ mass distributions for simulated signal events with a generated VLQ mass $m_{B} = 1200\GeV$. A moderate requirement of $\chi^{2}$/ndf < 2$ is applied to the events. Mass distributions for 4-jet (left), 5-jet (center), and 6-jet (right) events are shown for the three decay modes: bHbH (upper row), bHbZ (middle row), and bZbZ (lower row).

Reconstructed VLQ mass distributions for simulated signal events with a generated VLQ mass $m_{B} = 1200\GeV$. A moderate requirement of $\chi^{2}$/ndf < 2$ is applied to the events. Mass distributions for 4-jet (left), 5-jet (center), and 6-jet (right) events are shown for the three decay modes: bHbH (upper row), bHbZ (middle row), and bZbZ (lower row).

More…

A search for decays of the Higgs boson to invisible particles in events with a top-antitop quark pair or a vector boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 933, 2023.
Inspire Record 2637936 DOI 10.17182/hepdata.137761

A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The 95% confidence level upper limit set on the branching fraction of the 125 GeV Higgs boson to invisible particles, $\mathcal{B}$(H $\to$ inv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous $\mathcal{B}$(H $\to$ inv) searches carried out at $\sqrt{s}$ = 7, 8, and 13 TeV in complementary production modes. The combined upper limit at 95% confidence level on $\mathcal{B}$(H $\to$ inv) is 0.15 (0.08 expected).

14 data tables

Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for hadronic final states of ttH and resolved VH channels, and their combination, using data from 2016--2018 and assuming a SM Higgs boson with a mass of 125 GeV.

Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for the VBF, ttH, VH and ggH channels using all available CMS data, and their combination, assuming a SM Higgs boson with a mass of 125 GeV.

Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for the VBF, ttH, VH and ggH channels using Run2 CMS data, and their combination, assuming a SM Higgs boson with a mass of 125 GeV.

More…

A search for new phenomena in pp collisions at sqrt(s) = 13 TeV in final states with missing transverse momentum and at least one jet using the alphaT variable

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 294, 2017.
Inspire Record 1495423 DOI 10.17182/hepdata.77606

A search for new phenomena is performed in final states containing one or more jets and an imbalance in transverse momentum in pp collisions at a centre-of-mass energy of 13 TeV. The analysed data sample, recorded with the CMS detector at the CERN LHC, corresponds to an integrated luminosity of 2.3 inverse femtobarns. Several kinematic variables are employed to suppress the dominant background, multijet production, as well as to discriminate between other standard model and new physics processes. The search provides sensitivity to a broad range of new-physics models that yield a stable weakly interacting massive particle. The number of observed candidate events is found to agree with the expected contributions from standard model processes, and the result is interpreted in the mass parameter space of fourteen simplified supersymmetric models that assume the pair production of gluinos or squarks and a range of decay modes. For models that assume gluino pair production, masses up to 1575 and 975 GeV are excluded for gluinos and neutralinos, respectively. For models involving the pair production of top squarks and compressed mass spectra, top squark masses up to 400 GeV are excluded.

97 data tables

Summary of the lower bounds of the first and final bins in $H_{\mathrm{T}}$ in [GeV] (the latter in parentheses) as a function of $n_{\text{jet}}$ and $n_{\text{b}}$.

Systematic uncertainties (in percent) in the transfer ($\mathcal{T}$) factors used in the method to estimate the SM backgrounds with genuine $\vec{p}_t^{miss}$ in the signal region. The quoted ranges provide representative values of the observed variations as a function of $n_{\mathrm{jet}}$ and $H_{\mathrm{T}}$.

A summary of the simplified SUSY models used to interpret the results of this search. All on-shell SUSY particles in the decay are stated.

More…

A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

The CMS & TOTEM collaborations Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 827, 2023.
Inspire Record 2639338 DOI 10.17182/hepdata.135797

A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp $\to$ pp + Z/$\gamma$ + X, in proton-tagged events from proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600-1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of pp $\to$ pp + Z/$\gamma$ + X are set.

35 data tables

Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for multi(+z)-multi(−z) proton reconstruction categories.

Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for multi(+z)-single(−z) proton reconstruction categories.

Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for single(+z)-multi(−z) proton reconstruction categories.

More…

A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 796 (2019) 131-154, 2019.
Inspire Record 1706172 DOI 10.17182/hepdata.91053

A search for new light bosons decaying into muon pairs is presented using a data sample corresponding to an integrated luminosity of 35.9 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the CERN LHC. The search is model independent, only requiring the pair production of a new light boson and its subsequent decay to a pair of muons. No significant deviation from the predicted background is observed. A model independent limit is set on the product of the production cross section times branching fraction to dimuons squared times acceptance as a function of new light boson mass. This limit varies between 0.16 and 0.45 fb over a range of new light boson masses from 0.25 to 8.5 GeV. It is then interpreted in the context of the next-to-minimal supersymmetric standard model and a dark supersymmetry model that allows for nonnegligible light boson lifetimes. In both cases, there is significant improvement over previously published limits.

11 data tables

The model independent 95% CL upper limit on cross section times branching ratio times acceptance

The model independent 90% CL upper limit on cross section times branching ratio times acceptance

NMSSM 95% CL upper limit on cross section times branching ratio

More…

A study of final-state radiation in decays of Z bosons produced in pp collisions at 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.D 91 (2015) 092012, 2015.
Inspire Record 1346843 DOI 10.17182/hepdata.67634

The differential cross sections for the production of photons in Z to mu+ mu- gamma decays are presented as a function of the transverse energy of the photon and its separation from the nearest muon. The data for these measurements were collected with the CMS detector and correspond to an integrated luminosity of 4.7 inverse femtobarns of pp collisions at sqrt(s) = 7 TeV delivered by the CERN LHC. The cross sections are compared to simulations with POWHEG and PYTHIA, where PYTHIA is used to simulate parton showers and final-state photons. These simulations match the data to better than 5%.

8 data tables

Measured differential cross section dsigma/dET in pb/GeV. For the data values, the first uncertainty is statistical and the second is systematic. For the theory values, the uncertainty combines statistical, PDF, and renormalization/factorization scale components.

Measured differential cross section dsigma/dET in pb/GeV given (0.05 < DeltaR < 0.5). For the data values, the first uncertainty is statistical and the second is systematic. For the theory values, the uncertainty combines statistical, PDF, and renormalization/factorization scale components.

Measured differential cross section dsigma/dET in pb/GeV given (0.5 < DeltaR < 3.0). For the data values, the first uncertainty is statistical and the second is systematic. For the theory values, the uncertainty combines statistical, PDF, and renormalization/factorization scale components.

More…

Accurate measurement of F2(d)/F2(p) and R(d)-R(p).

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Nucl.Phys.B 487 (1997) 3-26, 1997.
Inspire Record 426595 DOI 10.17182/hepdata.32750

Results are presented for F2d/F2p and Rd-Rp from simultaneous measurements of deep inelastic muon scattering on hydrogen and deuterium targets, at 90, 120, 200 and 280 GeV. The difference Rd-Rp, determined in the range 0.002<x<0.4 at an average Q^2 of 5 GeV^2, is compatible with zero. The x and Q^2 dependence of F2d/F2p was measured in the kinematic range 0.001<x<0.8 and 0.1<Q^2<145 GeV^2 with small statistical and systematic errors. For x>0.1 the ratio decreases with Q^2.

23 data tables

No description provided.

No description provided.

No description provided.

More…

An Improved measurement of R(b) using a double tagging method

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 1-17, 1997.
Inspire Record 427104 DOI 10.17182/hepdata.47645

This paper describes an update of the double tagging measurement of the fraction, Rb, of Z0 → bb̅ events in hadronic Z0 decays, with statistics improved by including the data collected in 1994. The presence of electrons or muons from semileptonic decays of bottom hadrons and the detection of bottom hadron decay vertices were used together to obtain an event sample enriched in Z0 → bb̅ decays. The efficiency of the bb̅ event tagging was obtained from the data by comparing the numbers of events having a bottom signature in either one or both thrust hemispheres. Efficiency correlations between opposite event hemispheres are small (< 0.5%) and well understood through comparisons between the real and simulated data samples. A value of Rb= 0.2175 ± 0.0014 ± 0.0017 was obtained, where the first error is statistical and the second systematic. The uncertainty on the decay width Γ(Z0 → cc̅) is not included in these errors. The result depends on Rc as follows: $${⩼ Delta R_{⤪ b}⩈er R_{⤪ b}}=-0.084{⩼ Delta R_{⤪ c}⩈er R_{⤪ c}},$$ where ΔRc is the deviation of Rc from the value 0.172 predicted by the Standard Model.

1 data table

No description provided.


Analysis of hadronic final states and the photon structure function F2(gamma) in deep inelastic electron photon scattering at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 33-48, 1997.
Inspire Record 426209 DOI 10.17182/hepdata.47770

Deep inelastic electron-photon scattering is studied in the Q2 ranges from 6 to 30 GeV2 and from 60 to 400 GeV2 using the full sample of LEP data taken with the OPAL detector at centre-of-mass energies close to the Z0 mass, with an integrated luminosity of 156.4 pb−1. Energy flow distributions and other properties of the measured hadronic final state are compared with the predictions of Monte Carlo models, including HERWIG and PYTHIA. Sizeable differences are found between the data and the models, especially at low values of the scaling variable x. New measurements are presented of the photon structure function $F_2^{αmma }(x,Q^2)$, allowing for the first time for uncertainties in the description of the final state by different Monte Carlo models. The differences between the data and the models contribute significantly to the systematic errors on $F_2^{αmma }$. The slope ${⤪ d}(F_2^{αmma }/←pha )/{⤪ d ln} Q^2$ is measured to be $0.13_{-0.04}^{+0.06}$.

5 data tables

No description provided.

No description provided.

No description provided.

More…