This paper presents a combination of searches for the nonresonant production of Higgs boson pairs (HH) in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data set was collected by the CMS experiment at the LHC from 2016 to 2018 and corresponds to a total integrated luminosity of 138 fb$^{-1}$. The observed (expected) upper limit on the inclusive HH production cross section relative to the standard model (SM) prediction is found to be 3.5 (2.5). Assuming all other Higgs boson couplings are equal to their SM values, the Higgs boson trilinear self-coupling modifier $κ_λ=λ_3/λ_{3}^\text{SM}$ is constrained in the range $-$1.35 $\leq$$κ_λ$$\leq$ 6.37 at 95% confidence level. Similarly, for the coupling modifier $κ_{2\mathrm{V}}$, which governs the interaction between two vector bosons and two Higgs bosons, we have excluded $κ_{2\mathrm{V}}$ = 0 at more than 5 standard deviations for all values of $κ_λ$. At 95% confidence level assuming other couplings are equal to their SM values, $κ_{2\mathrm{V}}$ is constrained in the range 0.64 $\leq$ $κ_{2\mathrm{V}}$ $\leq$ 1.40. This work also studies HH production in several new physics scenarios, using the Higgs effective field theory (HEFT) framework. The HEFT framework is further exploited to study various ultraviolet complete models with an extended Higgs sector and set constraints on specific parameters. An extrapolation of the results to the integrated luminosity expected after the high-luminosity upgrade of the LHC is reported as well.
Values of the effective Lagrangian couplings for the Higgs Effective field theory benchmarks proposed in Ref. [33].
Values of the effective Lagrangian couplings for the Higgs Effective field theory benchmarks proposed in Ref. [34].
Summary of results for the HH analyses included in this combination. The second column is the observed (expected) 95$\%$ CL upper limit on the inclusive signal strength $r$. The third (fourth) column is the allowed 68$\%$ CL interval for the coupling modifier $\kappa_\lambda$ ($\kappa _{2V}$). The last column indicates whether the analysis is included in the results using the HEFT parametrisation.
The long-range collective flow of particles produced in oxygen-oxygen (OO) and neon-neon (NeNe) collisions is measured with the CMS detector at the CERN LHC. The data samples were collected at a center-of-mass energy per nucleon pair of 5.36 TeV, with integrated luminosities of 7 nb$^{-1}$ and 0.8 nb$^{-1}$ for OO and NeNe collisions, respectively. Two- and four-particle azimuthal correlations are measured over nearly five units of pseudorapidity. Significant elliptic ($v_2$) and triangular ($v_3$) flow harmonics are observed in both systems. The ratios of $v_n$ coefficients between NeNe and OO collisions reveal sensitivity to quadrupole correlations in the nuclear wave functions. Hydrodynamic models with $\textit{ab initio}$ nuclear structure inputs qualitatively reproduce the collision-overlap dependence of both the $v_n$ values and the NeNe to OO ratios. These measurements provide new constraints on hydrodynamic models for small collision systems and offer valuable input on the nuclear structure of $^{16}$O and $^{20}$Ne.
The $v_{2}\{2,\lvert\Delta\eta\rvert>2\}$, $v_{3}\{2,\lvert\Delta\eta\rvert>2\}$ and $v_{2}\{4\}$ values for charged particles as functions of centrality in OO collisions at 5.36 TeV.
The $v_{2}\{2,\lvert\Delta\eta\rvert>2\}$, $v_{3}\{2,\lvert\Delta\eta\rvert>2\}$ and $v_{2}\{4\}$ values for charged particles as functions of centrality in NeNe collisions at 5.36 TeV.
The $v_{2}\{2,\lvert\Delta\eta\rvert>2\}$ and $v_{2}\{4\}$ ratios for charged particles as functions of centrality in NeNe to OO collisions at 5.36 TeV.
A measurement is presented of the electroweak vector boson scattering production of ZV (V = W, Z) boson pairs associated with two jets in proton-proton collisions at a center-of-mass energy of 13 TeV. The data, corresponding to an integrated luminosity of 138 fb$^{-1}$, were collected at the CERN LHC with the CMS detector during the 2016$-$2018 data-taking period. The analysis targets final states with a pair of isolated electrons or muons from Z boson decays and three or four jets, depending on the momentum of the vector boson that decays into quarks. Signal strength is measured for events characterized by a large invariant mass of two forward jets with a wide pseudorapidity gap between them. The electroweak production of ZV in association with two jets is measured with an observed (expected) significance of 1.3 (1.8) standard deviations. A combination of the analyses of ZV channel and the previously published WV channel in the lepton plus jets final state places constraints on effective field theory parameters that describe anomalous electroweak production of WW, WZ, and ZZ boson pairs in association with two jets. Several world best limits are set on anomalous quartic gauge couplings in terms of dimension-8 standard model effective field theory operators.
Distributions of DNN score for the data and post-fit backgrounds (stacked histograms), in the SRs of the ZV channel for the b tag (left) and the b veto (right) channels, for the resolved (merged) category in the first (second) row. The post-fit VBS EW ZV signal is shown overlaid as a red solid line. The overflow is included in the last bin. The lower panels show the ratios of the data to the pre-fit background prediction and post-fit background yield as red open squares and blue points, respectively. The gray band in the lower panels indicates the systematic component of the post-fit background uncertainty. The vertical bars on the data points represent statistical uncertainties. The last bin includes overflow.
Distributions of DNN score for the data and post-fit backgrounds (stacked histograms), in the SRs of the ZV channel for the b tag (left) and the b veto (right) channels, for the resolved (merged) category in the first (second) row. The post-fit VBS EW ZV signal is shown overlaid as a red solid line. The overflow is included in the last bin. The lower panels show the ratios of the data to the pre-fit background prediction and post-fit background yield as red open squares and blue points, respectively. The gray band in the lower panels indicates the systematic component of the post-fit background uncertainty. The vertical bars on the data points represent statistical uncertainties. The last bin includes overflow.
Distributions of DNN score for the data and post-fit backgrounds (stacked histograms), in the SRs of the ZV channel for the b tag (left) and the b veto (right) channels, for the resolved (merged) category in the first (second) row. The post-fit VBS EW ZV signal is shown overlaid as a red solid line. The overflow is included in the last bin. The lower panels show the ratios of the data to the pre-fit background prediction and post-fit background yield as red open squares and blue points, respectively. The gray band in the lower panels indicates the systematic component of the post-fit background uncertainty. The vertical bars on the data points represent statistical uncertainties. The last bin includes overflow.
A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H $\to$$\mathrm{c\bar{c}}$, produced in association with a top quark-antiquark pair ($\mathrm{t\bar{t}}$H) is presented. The search is performed with data from proton-proton collisions at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Advanced machine learning techniques are employed for jet flavor identification and event classification. The Higgs boson decay to a bottom quark-antiquark pair is measured simultaneously and the observed $\mathrm{t\bar{t}}$H (H $\to$$\mathrm{b\bar{b}}$) event rate relative to the standard model expectation is 0.91 $^{+0.26}_{-0.22}$. The observed (expected) upper limit on the product of production cross section and branching fraction $σ$($\mathrm{t\bar{t}}$H) $\mathcal{B}$(H $\to$$\mathrm{c\bar{c}}$) is 0.11 (0.13) pb at 95% confidence level, corresponding to 7.8 (8.7) times the standard model prediction. When combined with the previous search for H $\to$ $\mathrm{c\bar{c}}$ via associated production with a W or Z boson, the observed (expected) 95% confidence interval on the Higgs-charm Yukawa coupling modifier, $κ_\mathrm{c}$, is $\lvert{κ_\mathrm{c}}\rvert$ $\lt$ 3.5 (2.7), the most stringent constraint to date.
Upper limits on the signal strength for $\text{H}\to\text{c}\overline{\text{c}}$ decays with respect to the standard model expectation of unity.
Upper limits on the signal strength for $\text{t}\overline{\text{t}}\text{H}(\text{H}\to\text{c}\overline{\text{c}})$ decays with respect to the standard model expectation of unity.
Signal strength and significance for $\text{t}\overline{\text{t}}\text{H}(\text{H}\to\text{b}\overline{\text{b}})$ decays with respect to the standard model expectation of unity.
This paper presents a search for new physics through the process where a new massive particle, X, decays into a Higgs boson and a second particle, Y. The Higgs boson subsequently decays into a bottom quark-antiquark pair, reconstructed as a single large-radius jet. The decay products of Y are also assumed to produce a single large-radius jet. The identification of the Y particle is enhanced by computing the anomaly score of its candidate jet using an autoencoder, which measures deviations from typical QCD multijet jets. This allows a simultaneous search for multiple Y decay scenarios within a single analysis. In the main benchmark process, Y is a scalar particle that decays into W$^+$W$^-$. Two other benchmark processes are also considered, where Y is a scalar particle decaying into a light quark-antiquark pair, or into a top quark-antiquark pair. The last benchmark considers Y as a hadronically decaying top quark, arising from the decay of a vector-like quark into a top quark and a Higgs boson. Data recorded by the CMS experiment at a center-of-mass energy of 13 TeV in 2016$-$2018, and corresponding to an integrated luminosity of 138 fb$^{-1}$, are analyzed. No significant excess is observed, and upper limits on the benchmark signal cross section for various masses of X and Y, at 95% confidence level, are placed.
The $m_{jj}$ and $m_{J}$ projections for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the CR. Pass and Fail categories are shown. The high level of agreement between the model and the data in the Fail region is due to the nature of the background estimate. The lower panels show the ``Pull'' defined as $(\text{observed events}{-}\text{expected events})/\sqrt{\smash[b]{\sigma_\text{obs}^{2} + \sigma_\text{exp}^{2}}}$, where $\sigma_\text{obs}$ and $\sigma_\text{exp}$ are the total uncertainties in the observation and the background estimation, respectively.
The $m_{jj}$ and $m_{J}$ projections for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the CR. Pass and Fail categories are shown. The high level of agreement between the model and the data in the Fail region is due to the nature of the background estimate. The lower panels show the ``Pull'' defined as $(\text{observed events}{-}\text{expected events})/\sqrt{\smash[b]{\sigma_\text{obs}^{2} + \sigma_\text{exp}^{2}}}$, where $\sigma_\text{obs}$ and $\sigma_\text{exp}$ are the total uncertainties in the observation and the background estimation, respectively.
The $m_{jj}$ and $m_{J}$ projections for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the CR. Pass and Fail categories are shown. The high level of agreement between the model and the data in the Fail region is due to the nature of the background estimate. The lower panels show the ``Pull'' defined as $(\text{observed events}{-}\text{expected events})/\sqrt{\smash[b]{\sigma_\text{obs}^{2} + \sigma_\text{exp}^{2}}}$, where $\sigma_\text{obs}$ and $\sigma_\text{exp}$ are the total uncertainties in the observation and the background estimation, respectively.
The angular distributions of Drell-Yan lepton pairs provide sensitive probes of the underlying dynamics of quantum chromodynamics (QCD) effects in vector-boson production. This paper presents for the first time the measurement of the full set of angular coefficients together with the differential cross-section as a function of the transverse momentum of the $W$ boson, in the full phase space of the decay leptons. The measurements are performed separately for the $W^-$ and $W^+$ channels. The analysis uses proton-proton collision data recorded by the ATLAS experiment at the Large Hadron Collider in 2017 and 2018, during special low-luminosity runs with a reduced number of interactions per bunch crossings (pile-up). The data correspond to an integrated luminosity of $338$ pb$^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The low pile-up conditions enable an optimised reconstruction of the $W$ boson transverse momentum. All results agree with theory predictions incorporating finite-order QCD corrections up to next-to-next-to-leading-order in the strong coupling constant, $α_S$.
The measured angular coefficients for $W^-$ in bins of the $p_T$ of the W.
The measured angular coefficients for $W^+$ in bins of the $p_T$ of the W.
The measured differential cross-section for $W^-$ in bins of the $p_T$ of the $W$.
At hadron colliders, the net transverse momentum of particles that do not interact with the detector (missing transverse momentum, $\vec{p}_\mathrm{T}^\text{miss}$) is a crucial observable in many analyses. In the standard model, $\vec{p}_\mathrm{T}^\text{miss}$ originates from neutrinos. Many beyond-the-standard-model particles, such as dark matter candidates, are also expected to leave the experimental apparatus undetected. This paper presents a novel $\vec{p}_\mathrm{T}^\text{miss}$ estimator, DeepMET, which is based on deep neural networks that were developed by the CMS Collaboration at the LHC. The DeepMET algorithm produces a weight for each reconstructed particle based on its properties. The estimator is based on the negative vector sum of the weighted transverse momenta of all reconstructed particles in an event. Compared with other estimators currently employed by CMS, DeepMET improves the $\vec{p}_\mathrm{T}^\text{miss}$ resolution by 10$-$30%, shows improvement for a wide range of final states, is easier to train, and is more resilient against the effects of additional proton-proton interactions accompanying the collision of interest.
Recoil responses of different $\vec{p}^\mathrm{miss}_\mathrm{T}$ estimators in data and MC simulations after the $Z\to\mu\mu$ selections, as a function of $q_T$.
Response-corrected resolutions of $u_{\parallel}$ vs $q_T$ of different $\vec{p_{T}^{miss}}$ estimators in data after the $Z\to\mu\mu$ selections, as a function of $q_T$.
Response-corrected resolutions of $u_{\perp}$ vs $q_T$ of different $\vec{p_{T}^{miss}}$ estimators in data after the $Z\to\mu\mu$ selections, as a function of $q_T$.
A model-independent measurement of the differential production cross section of the Higgs boson decaying into a pair of W bosons, with a final state including two jets produced in association, is presented. In the analysis, events are selected in which the decay products of the two W bosons consist of an electron, a muon, and missing transverse momentum. The model independence of the measurement is maximized by making use of a discriminating variable that is agnostic to the signal hypothesis developed through machine learning. The analysis is based on proton-proton collision data at $\sqrt{s}$ = 13 TeV collected with the CMS detector from 2012$-$2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The production cross section is measured as a function of the difference in azimuthal angle between the two jets. The differential cross section measurements are used to constrain Higgs boson couplings within the standard model effective field theory framework.
Measured fiducial cross section summing VBF and ggF production modes.
Measured fiducial cross section of VBF and ggF production modes.
Measured fiducial cross section of VBF and ggF production modes.
This article reports on a search for dijet resonances using $132$ fb$^{-1}$ of $pp$ collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. The search is performed solely on jets reconstructed within the ATLAS trigger to overcome bandwidth limitations imposed on conventional single-jet triggers, which would otherwise reject data from decays of sub-TeV dijet resonances. Collision events with two jets satisfying transverse momentum thresholds of $p_{\textrm{T}} \ge 85$ GeV and jet rapidity separation of $|y^{*}|<0.6$ are analysed for dijet resonances with invariant masses from $375$ to $1800$ GeV. A data-driven background estimate is used to model the dijet mass distribution from multijet processes. No significant excess above the expected background is observed. Upper limits are set at $95\%$ confidence level on coupling values for a benchmark leptophobic axial-vector $Z^{\prime}$ model and on the production cross-section for a new resonance contributing a Gaussian-distributed line-shape to the dijet mass distribution.
Observed $m_{jj}$ distribution for the J50 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.
Observed $m_{jj}$ distribution for the J100 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.
Observed 95% $\text{CL}_\text{S}$ upper limits on the production cross-section times acceptance times branching ratio to jets, $\sigma \cdot A \cdot \text{BR}$, of Gaussian-shaped signals of 5%, 10%, and 15% width relative to their peak mass, $m_G$. Also included are the corresponding expected upper limits predicted for the case the $m_{jj}$ distribution is observed to be identical to the background prediction in each bin and the $1\sigma$ and $2\sigma$ envelopes of outcomes expected for Poisson fluctuations around the background expectation. Limits are derived from the J50 signal region.
The existence of right-handed neutrinos with Majorana masses below the electroweak scale could help address the origins of neutrino masses, the matter-antimatter asymmetry, and dark matter. In this paper, leptonic decays of W bosons from 140 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC, reconstructed in the ATLAS experiment, are used to search for heavy neutral leptons produced through their mixing with muon or electron neutrinos in a scenario with lepton number violation. The search is conducted using prompt leptonic decay signatures. The considered final states require two same-charge leptons or three leptons, while vetoing three-lepton same-flavour topologies. No significant excess over the expected Standard Model backgrounds is found, leading to constraints on the heavy neutral lepton's mixing with muon and electron neutrinos for heavy-neutral-lepton masses. The analysis excludes $|U_{e}|^2$ values above $8\times 10^{-5}$ and $|U_μ|^2$ values above $5.0 \times 10^{-5}$ in the full mass range of 8-65 GeV. The strongest constraints are placed on heavy-neutral-lepton masses in the range 15--30 GeV of $|U_{e}|^2 < 1.1 \times 10^{-5}$ and $|U_μ|^2 < 5 \times 10^{-6}$.
Comparison between the data and estimated background at preselection level. Events entering the SRs defined in Section 5 are vetoed. The events are classified in terms of the number of leptons and their flavours, as well as the number of b-jets. The ℓ<sup>±</sup>ℓ<sup>±</sup> bins have a ≥2 signal leptons selection, with no requirement on the number of baseline leptons; the ℓ<sup>±</sup>ℓ<sup>±</sup>ℓ'<sup>∓</sup> bins have a =3 signal leptons selection. The uncertainties shown with hashed bands, include only the statistical uncertainties and the full uncertainties associated with the data-driven background estimates. The bottom panel shows the ratio of the observed data yields to the predicted background yields.
Comparison between the data and estimated background in the validation regions. The hatched band represents the total uncertainty in the estimated background.
Observed 95% confidence level (CL) exclusion limits for the (a) |U<sub>e</sub>|<sup>2</sup> and (b) |U<sub>μ</sub>|<sup>2</sup> mixing parameters versus the HNL mass. The expected (dashed line) exclusion limits are also shown. The 1σ and 2σ uncertainty bands around the expected exclusion limit reflect uncertainties in signal and background yields.