The transverse-momentum ($p_{\rm T}$) spectra of ${\rm K}^*(892)^0$ and $\phi(1020)$ measured with the ALICE detector up to $p_{\rm T}$ = 16 GeV/$c$ in the rapidity range $-1.2 < y < 0.3$, in p-Pb collisions at the center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm NN}}$ = 5.02 TeV are presented as a function of charged particle multiplicity and rapidity. The measured $p_{\rm T}$ distributions show a dependence on both multiplicity and rapidity at low $p_{\rm T}$ whereas no significant dependence is observed at high $p_{\rm T}$. A rapidity dependence is observed in the $p_{\rm T}$-integrated yield (d$N$/d$y$), whereas the mean transverse momentum ($\left< p_{\rm T} \right>$) shows a flat behavior as a function of rapidity. The rapidity asymmetry ($Y_{\rm asym}$) at low $p_{\rm T}$ ( < 5 GeV/$c$) is more significant for higher multiplicity classes. At high $p_{\rm T}$, no significant rapidity asymmetry is observed in any of the multiplicity classes. Both ${\rm K}^*(892)^0$ and $\phi(1020)$ show similar $Y_{\rm asym}$. The nuclear modification factor ($Q_{\rm CP}$) as a function of $p_{\rm T}$ shows a Cronin-like enhancement at intermediate $p_{\rm T}$, which is more prominent at higher rapidities (Pb-going direction) and in higher multiplicity classes. At high $p_{\rm T}$ (> 5 GeV/$c$), the $Q_{\rm CP}$ values are greater than unity and no significant rapidity dependence is observed.
$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$5.02 TeV ($0.0 < y < 0.3$).
$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$5.02 TeV ($-0.3 < y < 0.0$).
$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$5.02 TeV ($-0.6 < y < -0.3$).
Results on $\phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $\phi \to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $\phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $\phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $\phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $\phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.
Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 158 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.
Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 80 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.
Transverse momentum $p_T$ spectrum of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 40 GeV/c, in a broad rapidity $y$ bin of (0, 1.5).
Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using $p+$Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of $\sqrt{s_{NN}}=5.02$ TeV. Charged particles are reconstructed over pseudorapidity $|\eta|<2.3$ and transverse momentum between $0.1$ GeV and $22$ GeV in a dataset corresponding to an integrated luminosity of $1$ $\mu b^{-1}$. The results are presented in the form of charged-particle nuclear modification factors, where the $p+$Pb charged-particle multiplicities are compared between central and peripheral $p+$Pb collisions as well as to charged-particle cross sections measured in pp collisions. The $p+$Pb collision centrality is characterized by the total transverse energy measured in $-4.9<\eta<-3.1$, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the $p+$Pb collision are carried out using the Glauber model and two Glauber-Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around $3$ GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.
Invariant differential $p_{T}$ spectra of charged particles which are produced in p+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shown in six $\eta$ intervals, for the 0--90% centrality interval. The individual spectra are scaled by constant factors (indicated in the legend) for visibility. The statistical uncertainties are indicated with vertical lines and the systematic uncertainties are indicated with boxes, but are generally much smaller than the size of the symbols.
Invariant differential $p_{T}$ spectra of charged particles which are produced in p+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shown in six y* intervals, for the 0--90% centrality interval. The individual spectra are scaled by constant factors (indicated in the legend) for visibility. The statistical uncertainties are indicated with vertical lines and the systematic uncertainties are indicated with boxes, but are generally much smaller than the size of the symbols.
The invariant differential y* spectra of charged particles produced in p+Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV are shown in five centrality intervals for $p_{T}>0.1$ GeV. The statistical uncertainties are indicated with vertical lines and the systematic uncertainties are indicated with boxes.
Inclusive production of $\Lambda$-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158~\GeVc. Spectra of transverse momentum and transverse mass as well as distributions of rapidity and x$_{_F}$ are presented. The mean multiplicity was estimated to be $0.120\,\pm0.006\;(stat.)\,\pm 0.010\;(sys.)$. The results are compared with previous measurements and predictions of the EPOS, UrQMD and FRITIOF models.
Double-differential yield $\frac{d^2n}{dydp_{_T}}$.
Double-differential yield $\frac{d^2n}{dydm_{_T}}$.
Double-differential yields, $\frac{d^{2}n}{x_{_F}p_{_T}}$ and $f_n(x_{_F},p_{T})$, for $x_{_F}<0$.
We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($\sqrt{s} = $ 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus-nucleus and proton-nucleus collisions.
Transverse momentum spectra of $\pi^-$ mesons produced in inelastic $p p$ interactions at 20 GeV in various rapidity ranges.
Transverse momentum spectra of $\pi^-$ mesons produced in inelastic $p p$ interactions at 20 GeV in various rapidity ranges.
Transverse momentum spectra of $\pi^-$ mesons produced in inelastic $p p$ interactions at 20 GeV in various rapidity ranges.
The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 inverse nb of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt(s_NN)=2.76 TeV. The Z bosons are reconstructed via di-electron and di-muon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.
The corrected per-event rapidity distribution of Z bosons over the centrality region 0-80%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 0-5%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 5-10%.
The ALICE collaboration reports the measurement of the inclusive J/psi yield as a function of charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV at the LHC. J/psi particles are detected for p_t > 0, in the rapidity interval |y| < 0.9 via decay into e+e-, and in the interval 2.5 < y < 4.0 via decay into mu+mu- pairs. An approximately linear increase of the J/psi yields normalized to their event average (dN_{J/psi}/dy)/
The relative J/psi yield (dN_(j/psi)/dy)/<dN_(j/psi)/dy> in the di-electron channel as a function of the relative charged particle multiplicity density (dN_(ch)/deta)/<dN_(ch)/deta>.
The relative J/psi yield (dN_(j/psi)/dy)/<dN_(j/psi)/dy> in the di-muon channel as a function of the relative charged particle multiplicity density (dN_(ch)/deta)/<dN_(ch)/deta>.
The production of Kshort and Lambda hadrons is studied in inelastic pp collisions at sqrt(s) = 0.9 and 7 TeV collected with the ATLAS detector at the LHC using a minimum-bias trigger. The observed distributions of transverse momentum, rapidity, and multiplicity are corrected to hadron level in a model-independent way within well defined phase-space regions. The distribution of the production ratio of Lambdabar to Lambda baryons is also measured. The results are compared with various Monte Carlo simulation models. Although most of these models agree with data to within 15% in the Kshort distributions, substantial disagreements with data are found in the Lambda distributions of transverse momentum.
The corrected transverse momentum distribution of KS mesons at 7000 GeV.
The corrected rapidity distribution of KS mesons at 7000 GeV.
The corrected multiplicity distribution of KS mesons at 7000 GeV.
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
A measurement of the inclusive bottom jet cross section is presented for events containing a $Z$ boson in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using the Collider Detector at Fermilab. $Z$ bosons are identified in their electron and muon decay modes, and $b$ jets with $E_T>20$ GeV and $|\eta|<1.5$ are identified by reconstructing a secondary decay vertex. The measurement is based on an integrated luminosity of about 330 ${\rm pb}^{-1}$. A cross section times branching ratio of $\sigma (Z+b {\rm jets}) \times {\cal B}(Z \to \ell^+ \ell^-)= 0.93 \pm 0.36$ pb is found, where ${\cal B}(Z\to \ell^+ \ell^-)$ is the branching ratio of the $Z$ boson or $\gamma^*$ into a single flavor dilepton pair ($e$ or $\mu$) in the mass range between 66 and 116 GeV$/c^2$. The ratio of $b$ jets to the total number of jets of any flavor in the $Z$ sample, within the same kinematic range as the $b$ jets, is $2.36 \pm 0.92%$. Here, the uncertainties are the quadratic sum of statistical and systematic uncertainties. Predictions made with NLO QCD agree, within experimental and theoretical uncertainties, with these measurements.
B-jet cross section for the di-letpon mass from 66 to 116 GeV.
Ratio of the b-jet cross section to the inclusive Z0 cross section.
Ratio of the b-jet cross section to the generic jet cross section.