None
No description provided.
No description provided.
None
X ERROR D(-T)/(-T) = 2.0000 PCT.
X ERROR D(-T)/(-T) = 2.0000 PCT.
X ERROR D(-T)/(-T) = 2.0000 PCT.
None
No description provided.
No description provided.
No description provided.
The absolute differential cross sections of 17.9 GeV/$c$ $\alpha$-particles scattering on nuclear targets have been measured over a four momentum transfer range of $0.009
No description provided.
No description provided.
No description provided.
A high precision measurement of the υ-meson mass has been performed at the storage ring VEPP-4 using the MD-1 detector. The resonance depolarization method has been used for the absolute calibration of the beam energy that allowed to improve the accuracy of υ-mass measurement by a factor of ten. The following mass value has been obtained: M = 9459.7 ± 0.6 MeV.
No description provided.
We report charged-particle pair correlation analyses in the space of Delta -phi (azimuth) and Delta -eta (pseudo-rapidity), for central Au + Au collisions at sqrt{s_{NN}} = 200 GeV in the STAR detector. The analysis involves unlike-sign charge pairs and like-sign charge pairs, which are transformed into charge-dependent (CD) signals and charge-independent (CI) signals. We present detailed parameterizations of the data. A model featuring dense gluonic hot spots as first proposed by van Hove predicts that the observables under investigation would have sensitivity to such a substructure should it occur, and the model also motivates selection of transverse momenta in the range 0.8 < p_t < 2.0$ GeV/c. Both CD and CI correlations of high statistical significance are observed and possible interpretations are discussed.
FIG. 1: a) left side: The $\Delta\phi$ - $\Delta\eta$ correlation data for unlike-sign charge particle pairs from the Star central trigger dataset shown in a 2-dimensional (2-D) perspective plot. The particle tracks have 0.8 GeV/c < $p_t$ < 2.0 GeV/c and |$\eta$| < 1.0. The structure that looks like tiles on a roof is due to the readout boundary effects of the 12 sector TPC. b) right side: The similar correlation data for like-sign charge particle pairs is shown.
FIG. 1: a) left side: The $\Delta\phi$ - $\Delta\eta$ correlation data for unlike-sign charge particle pairs from the Star central trigger dataset shown in a 2-dimensional (2-D) perspective plot. The particle tracks have 0.8 GeV/c < $p_t$ < 2.0 GeV/c and |$\eta$| < 1.0. The structure that looks like tiles on a roof is due to the readout boundary effects of the 12 sector TPC. b) right side: The similar correlation data for like-sign charge particle pairs is shown.
FIG. 2: a) left side: The correlation data for the ratio of the histograms of same-event-pairs to mixed-event-pairs for unlike-sign charged pairs, shown in a two-dimensional (2-D) perspective plot $\Delta\phi$ - $\Delta\eta$. The plot was normalized to a mean of 1. b) right side: The similar correlation data for like-sign charge pairs.
The absolute differential cross sections for ap elastic scattering and for the sum of elastic and quasielastic aa scattering have been measured at a momentum of 17.9 GeV/c in the four-momentum transfer region (0.01 < | t | < 0.2) GeV2/c2 with normalization errors less than 3%. Such measurements in the energy region of a few GeV have been performed for the first time. The measurements have been carried out using the alpha particle beam with the intensity of (1-5)x105 particles/s extracted from the synchrophasotron during 0.3-0.5s. The cryogen target filled with hydrogen (0.847+-0.001 g/cm2) and helium was used. The substance amount along the particle path constituted 0.11 g/cm2 in an unfilled target. The total cross sections, diffraction cone slope parameters and total elastic cross sections for ap and aa scattering have been obtained. The results are compared with the calculations carried out in the frames of the Glauber-Sitenko diffraction multiple scattering theory. The deviation of the calculated differential cross sections from the experimental ones is observed. In the region of the diffraction cone the deviation has a different sign for ap and aa scattering and amounts to 10-15%
No description provided.
We present the first comprehensive tests of light-lepton universality in the angular distributions of semileptonic $B^0$-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral $B$ is fully reconstructed in $\Upsilon\left(4S\right)\to{}B \overline{B}$ decays in data corresponding to $189~\mathrm{fb}^{-1}$ integrated luminosity from electron-positron collisions collected with the Belle II detector. We find no significant deviation from the standard model expectations.
The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.
Internal jet structure in dijet production in deep-inelastic scattering is measured with the H1 detector at HERA. Jets with transverse energies ET,Breit > 5 GeV are selected in the Breit frame employing k_perp and cone jet algorithms. In the kinematic region of squared momentum transfers 10 < Q2 <~ 120 GeV2 and x-Bjorken values 2.10^-4 <~ xBj <~ 8.10^-3, jet shapes and subjet multiplicities are measured as a function of a resolution parameter. Distributions of both observables are corrected for detector effects and presented as functions of the transverse jet energy and jet pseudo-rapidity. Dependences of the jet shape and the average number of subjets on the transverse energy and the pseudo-rapidity of the jet are observed. With increasing transverse jet energies and decreasing pseudo-rapidities, i.e.towards the photon hemisphere, the jets are more collimated. QCD models give a fair description of the data.
The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range < 1.5 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.
The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range 1.5 TO 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.
The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range > 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.