Date

Pion-deuteron elastic differential cross-section at 994 mev/c

Bradamante, F. ; Conetti, S. ; Fidecaro, G. ; et al.
Lett.Nuovo Cim. 1S1 (1969) 894-896, 1969.
Inspire Record 58250 DOI 10.17182/hepdata.37456

None

1 data table

No description provided.


Neutron form-factors from quasielastic e d scattering

Bartel, W. ; Buesser, F.W. ; Dix, W.R. ; et al.
Phys.Lett.B 30 (1969) 285-288, 1969.
Inspire Record 56662 DOI 10.17182/hepdata.45282

The reaction e+d→e′+n+p was studied at electron scattering angles θ ⩽ 35° for four-momentum transfers of 0.39, 0.565 and 0.78 (GeV/ c ) 2 . By recording electron-neutron and electron-proton coincidences, the ratio of the electron scattering cross sections on quasi-free neutrons and protons was determined. An estimate of the binding effects, based on a Chew-Low-extrapolation, was made. Values for the neutron form factors were derived.

2 data tables

Axis error includes +- 0.0/0.0 contribution (Due to the different effective solid angles for neutron and proton detection in the counters).

No description provided.


Electromagnetic form factors of the proton between 15 and 50 fm-2

Berger, Christoph ; Gersing, E. ; Knop, G. ; et al.
Phys.Lett.B 28 (1968) 6890258X 276-278, 1968.
Inspire Record 56842 DOI 10.17182/hepdata.29174

The external beam of the 2.5 GeV-electron-synchrotron has been used to measre elastic electron proton scattering at four-momentum-transfers between 15 and 50 fm−2. By combining these results with measurements at small angles at DESY, we have obtained the electric and magnetic form factors separately. Their ratio shows a deviation from the scaling law.

2 data tables

No description provided.

No description provided.


Electroproduction of pions near the $\Delta(1236)$ isobar and the form-factor $G^*_M(q^2)$ of the $({\gamma} N\Delta)$ vertex

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Lett.B 28 (1968) 148-151, 1968.
Inspire Record 52791 DOI 10.17182/hepdata.45279

The cross section for inelastic electron-proton scattering was measured at incident electron energies of 1.5 to 6 GeV by magnetic analysis of the scattered electrons at angles between 10° and 35°. For invariant masses of the hardonic final state W ⩽ 1.4 GeV. the measured spectra are compared with theoretical predictions for electroproduction of the Δ(1236) isobar. The magnetic dipole transition form factor G ∗ M ( q 2 ) of the (γ N Δ)-vertex is derived for momentum transfers q 2 = 0.2 − 2.34 (GeV/ c ) 2 ard found to decrease more rapidly with q 2 than the proton form factors.

1 data table

Axis error includes +- 0.0/0.0 contribution.


Polarization in pp Elastic Scattering at Large Momentum Transfers

Booth, N.E. ; Conforto, G. ; Esterling, R.J. ; et al.
Phys.Rev.Lett. 21 (1968) 651-652, 1968.
Inspire Record 944913 DOI 10.17182/hepdata.21669

Measurements of the polarization in pp elastic scattering have been made at 5.15 GeV/c over the range −t=0.2 to 1.8 (GeV/c)2. The data are compared with a Regge-pole model, and with the diffraction model of Durand and Lipes in which the absorptive part of the pp interaction is derived from the electromagnetic form factor of the proton. The latter model reproduces the t dependence of the experimental data in a qualitative way.

1 data table

Strange-particle production in {8-BeV/c} proton-proton interactions

Firebaugh, M. ; Ascoli, G. ; Goldwasser, E.L. ; et al.
Phys.Rev. 172 (1968) 1354-1369, 1968.
Inspire Record 53978 DOI 10.17182/hepdata.26501

A systematic survey of strange-particle final states produced by 8−BeVc protons was made in the BNL 80-in. hydrogen bubble chamber. Cross sections were measured for some 33 reactions. The ratio of the cross section for the KK¯ channels to the total strange-particle cross section was measured to be 0.12 and appears to be rising in this momentum region. The total cross section for strange-particle production is estimated as 1.8±0.2 mb. Comparison is made of the data with the predictions of the one-pion-exchange model, and at least partial agreement occurs for the K+pΛ and πKNΣ final states. The KpΣ states appear to contain N*(1924)→KΣ, and the πKNΛ states all include Y*(1385) production with the π+K0pΛ state also containing N*(1236) and K*(890) production. An examination of the five- and six-body K, Λ states indicates strong Y*(1385) and N*(1236) production. Finally, all final states containing a K and a Λ show a dependence on M(K,Λ) which is well parametrized by a Breit-Wigner shape with M0=1777 MeV and Γ=345 MeV. This behavior is interpreted as being consistent with one-pion exchange as the dominant mechanism for these reactions.

1 data table

'1'. '2'.


NEUTRON - PROTON ELASTIC SCATTERING 8-GeV/c TO 30-GeV/c

Gibbard, Bruce G. ; Jones, Lawrence W. ; Longo, Michael J. ; et al.
Phys.Rev.Lett. 24 (1970) 22-24, 1970.
Inspire Record 52711 DOI 10.17182/hepdata.21622

The differential cross section for neutron-proton elastic scattering was measured in the diffraction region with incident-neutron momenta between 8 and 30 GeV/c. The experiment was a spark-chamber-counter experiment, conducted at the alternating-gradient synchrotron. Results are presented and compared with currently available lower energy np data and comparable energy pp data.

1 data table

No description provided.


Photoproduction of $\pi^0$ in the Backward Direction

Buschhorn, G. ; Heide, P. ; Kotz, U. ; et al.
Phys.Rev.Lett. 20 (1968) 230-232, 1968.
Inspire Record 54459 DOI 10.17182/hepdata.21735

None

1 data table

No description provided.


Reactions pi-minus + p ---> pi-minus + p and pi-minus + p ---> pi-minus + pi-neutral + p at 1.7 gev/c

Allen, D.D. ; Fisher, G.P. ; Godden, G. ; et al.
Nuovo Cim.A 58 (1968) 701-727, 1968.
Inspire Record 53770 DOI 10.17182/hepdata.37563

The reactions π−p→π−p and π−p→π−π0p for 1.7 GeV/c incident π− have been studied, in 3094 and 2244 interactions respectively, identified from 10 106 two-prong events measured in film exposed at the BNL 20 in. hydrogen bubble chamber. The differential elastic-scattering cross-section is found to show a first and second diffraction peak and a first diffraction minimum with indications of a second minimum and onset of a third maximum. The experimental curve has been fitted by a black-dise optical-model formula with radius (0.80±0.03) fm and by a differential cross-section computed from the Dirac equation depending on two ranges, 0.7 fm attractive imaginary and 0.4 fm repulsive. The dominant mode (∼40%) of the π−π0p production is through the two-body channel, π−p→ϱ−p. We find the following cross-sections: σ(π−p→π−p mb, σ(π−p→π−p mb. The differential rhomeson production cross-section shows a diffraction peak having a dependence (dσ/dt)(π−p→ϱ−p)=[(2.5±0.2) exp [(−5.3±0.5)t]] mb/(GeV/c)2, wheret is the squared four0momentum transfer between incoming and outgoing proton in (GeV/c)2, and a second diffraction maximum. It has been fitted by an optical-model formula for a bright ring of radius 0.80 fm and ring thickness 0.25 fm. The cross-section for σ(π−p→π−p was found to be (0.36±0.04) mb. From the inelastic data the Chew-Low dipion scattering cross-section has been computed, using various form factors. A form factor of unity is found to be acceptable.

1 data table

No description provided.


Experimental study study of antiproton-proton annihilation into a pair of charged Pi-Mesons or K-Mesons for incident antiproton mementa in the range from 0.72 GeV/c to 2.62 GeV/c

Fong, Douglas G. ; Pine, Jerome ;
RX-294, 1968.
Inspire Record 53368 DOI 10.17182/hepdata.50355

The cross sections for the two antiproton-proton annihilation-in-flight modes, ˉp + p → π+ + π- ˉp + p → k+ + k- were measured for fifteen laboratory antiproton beam momenta ranging from 0.72 to 2.62 GeV/c. No magnets were used to determine the charges in the final state. As a result, the angular distributions were obtained in the form [dσ/dΩ (ΘC.M.) + dσ/dΩ (π – ΘC.M.)] for 45 ≲ ΘC.M. ≲ 135°. A hodoscope-counter system was used to discriminate against events with final states having more than two particles and antiproton-proton elastic scattering events. One spark chamber was used to record the track of each of the two charged final particles. A total of about 40,000 pictures were taken. The events were analyzed by measuring the laboratory angle of the track in each chamber. The value of the square of the mass of the final particles was calculated for each event assuming the reaction ˉp + p → a pair of particles with equal masses. About 20,000 events were found to be either annihilation into π ±-pair or k ±-pair events. The two different charged meson pair modes were also distinctly separated. The average differential cross section of ˉp + p → π+ + π- varied from ~ 25 µb/sr at antiproton beam momentum 0.72 GeV/c (total energy in center-of-mass system, √s = 2.0 GeV) to ~ 2 µb/sr at beam momentum 2.62 GeV/c (√s = 2.64 GeV). The most striking feature in the angular distribution was a peak at ΘC.M. = 90° (cos ΘC.M. = 0) which increased with √s and reached a maximum at √s ~ 2.1 GeV (beam momentum ~ 1.1 GeV/c). Then it diminished and seemed to disappear completely at √s ~ 2.5 GeV (beam momentum ~ 2.13 GeV/c). A valley in the angular distribution occurred at cos ΘC.M. ≈ 0.4. The differential cross section then increased as cos ΘC.M. approached 1. The average differential cross section for ˉp + p → k+ + k- was about one third of that of the π±-pair mode throughout the energy range of this experiment. At the lower energies, the angular distribution, unlike that of the π±-pair mode, was quite isotropic. However, a peak at ΘC.M. = 90° seemed to develop at √s ~ 2.37 GeV (antiproton beam momentum ~ 1.82 GeV/c). No observable change was seen at that energy in the π±-pair cross section. The possible connection of these features with the observed meson resonances at 2.2 GeV and 2.38 GeV, and its implications, were discussed.

2 data tables

No description provided.

No description provided.