A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.
<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R < 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R > 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R < 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R > 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R < 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>
Validation of background estimate in validation regions for the High-pT jet selections
Validation of background estimate in validation regions for the Trackless jet selections
The production of W$^\pm$ bosons is studied in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV. Measurements are performed in the W$^\pm$ $\to$ $\mu^\pm\nu_\mu$ channel using a data sample corresponding to an integrated luminosity of 173.4 $\pm$ 8.7 nb$^{-1}$, collected by the CMS Collaboration at the LHC. The number of positively and negatively charged W bosons is determined separately in the muon pseudorapidity region in the laboratory frame $|\eta^\mu_\mathrm{lab}|$ $<$ 2.4 and transverse momentum $p_\mathrm{T}^\mu$ $>$ 25 GeV/$c$. The W$^\pm$ boson differential cross sections, muon charge asymmetry, and the ratios of W$^\pm$ boson yields for the proton-going over the Pb-going beam directions are reported as a function of the muon pseudorapidity in the nucleon-nucleon centre-of-mass frame. The measurements are compared to the predictions from theoretical calculations based on parton distribution functions (PDFs) at next-to-leading-order. The results favour PDF calculations that include nuclear modifications and provide constraints on the nuclear PDF global fits.
Muon charge asymmetry, $(N_{\mu}^{+} - N_{\mu}^{-})/(N_{\mu}^{+} + N_{\mu}^{-})$, as a function of the muon pseudorapidity in the centre-of-mass frame.
Differential production cross sections for $\textrm{pPb} \to W^{+} + X \to \mu^{+} \nu + X$ for positively charged muons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the muon pseudorapidity in the centre-of-mass frame. The global normalisation uncertainty of 3.5% is listed separately.
Differential production cross sections for $\textrm{pPb} \to W^{-} + X \to \mu^{-} \bar{\nu} + X$ for negatively charged muons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the muon pseudorapidity in the centre-of-mass frame. The global normalisation uncertainty of 3.5% is listed separately.
The relative yields of $\Upsilon$ mesons produced in pp and PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV and reconstructed via the dimuon decay channel are measured using data collected by the CMS experiment. Double ratios are formed by comparing the yields of the excited states, $\Upsilon$(2S) and $\Upsilon$(3S), to the ground state, $\Upsilon$(1S), in both PbPb and pp collisions at the same center-of-mass energy. The double ratios, [$\Upsilon$(nS)/$\Upsilon$(1S)]$_\mathrm{PbPb}$ / [$\Upsilon$(nS)/$\Upsilon$(1S)]$_\mathrm{pp}$, are measured to be 0.308 $\pm$ 0.055 (stat) $\pm$ 0.019 (syst) for the $\Upsilon$(2S) and less than 0.26 at 95% confidence level for the $\Upsilon$(3S). No significant $\Upsilon$(3S) signal is found in the PbPb data. The double ratios are studied as a function of collision centrality, as well as dimuon transverse momentum and rapidity. No significant dependencies are observed.
Double ratio of measured yields, $(N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{\mathrm{PbPb}} / (N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{pp}$, as a function of centrality, for upsilon $|y|<2.4$ and $p_T<30$GeV, and $p_{T}^{\mu}>4$GeV.
Double ratio of measured yields, $(N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{\mathrm{PbPb}} / (N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{pp}$, as a function of pT, for upsilon $|y|<2.4$, $p_{T}^{\mu}>4$GeV, and 0--100\% event centrality.
Double ratio of measured yields, $(N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{\mathrm{PbPb}} / (N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{pp}$, as a function of rapidity, for upsilon $pT<30$GeV, $p_{T}^{\mu}>4$GeV, and 0--100\% event centrality.
The relative modification of the prompt psi(2S) and J/psi yields from pp to PbPb collisions, at the center of mass energy of 5.02 TeV per nucleon pair, is presented. The analysis is based on pp and PbPb data samples collected by the CMS experiment at the LHC in 2015, corresponding to integrated luminosities of 28.0 inverse picobarns and 464 inverse microbarns, respectively. The double ratio of measured yields of prompt charmonia reconstructed through their decays into muon pairs, (N[psi(2S)]/N[J/psi])[PbPb] / (N[psi(2S)]/N[J/psi])[pp], is determined as a function of PbPb collision centrality and charmonium transverse momentum pt, in two kinematic intervals: abs(y) < 1.6 covering 6.5 < pt < 30 GeV/c and 1.6 < abs(y) < 2.4 covering 3 < pt < 30 GeV/c. The centrality-integrated double ratios are 0.36 +/- 0.08 (stat) +/-0.05 (syst) in the first interval and 0.24 +/- 0.22 (stat) +/- 0.09 (syst) in the second. The double ratio is lower than unity in all the measured bins, suggesting that the psi(2S) yield is more suppressed than the J/psi yield in the explored phase space.
Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.
95% CL intervals on the double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.
Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the forward rapidity analysis bin.
Measurements of strange hadron (K0s, Lambda + anti-Lambda, and Xi+ + Xi-) transverse momentum spectra in pp, pPb, and PbPb collisions are presented over a wide range of rapidity and event charged-particle multiplicity. The data were collected with the CMS detector at the CERN LHC in pp collisions at sqrt(s) = 7 TeV, pPb collisions at sqrt(s[NN]) = 5.02 TeV, and PbPb collisions at sqrt(s[NN]) = 2.76 TeV. The average transverse kinetic energy is found to increase with multiplicity, at a faster rate for heavier strange particle species in all systems. At similar multiplicities, the difference in average transverse kinetic energy between different particle species is observed to be larger for pp and pPb events than for PbPb events. In pPb collisions, the average transverse kinetic energy is found to be slightly larger in the Pb-going direction than in the p-going direction for events with large multiplicity. The spectra are compared to models motivated by hydrodynamics.
p-T differential invariant yield of K0s in pp collisions with center-of-mass energy/nucleon = 7 TeV.
p-T differential invariant yield of K0s in pp collisions with center-of-mass energy/nucleon = 7 TeV.
p-T differential invariant yield of Lambda + anti-Lambda in pp collisions with center-of-mass energy/nucleon = 7 TeV.
The first study of W boson production in pPb collisions is presented, for bosons decaying to a muon or electron, and a neutrino. The measurements are based on a data sample corresponding to an integrated luminosity of 34.6 inverse nanobarns at a nucleon-nucleon centre-of-mass energy of sqrt(s[NN]) = 5.02 TeV, collected by the CMS experiment. The W boson differential cross sections, lepton charge asymmetry, and forward-backward asymmetries are measured for leptons of transverse momentum exceeding 25 GeV, and as a function of the lepton pseudorapidity in the abs(eta[lab]) < 2.4 range. Deviations from the expectations based on currently available parton distribution functions are observed, showing the need for including W boson data in nuclear parton distribution global fits.
Lepton charge asymmetry, $(N_{\ell}^+ - N_{\ell}^-)/(N_{\ell}^+ + N_{\ell}^-)$ as a function of the lepton pseudorapidity.
Production cross section for $\textrm{pPb} \to W^+ + X \to \ell \nu + X$ for positively (top) and negatively (bottom) charged leptons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the lepton pseudorapidity. Values are given first for muons and electrons separately, then combined. The global normalization uncertainty of 3.5\% is not included in the listed uncertainties.
Production cross section for $\textrm{pPb} \to W^- + X \to \ell \nu + X$ for positively (top) and negatively (bottom) charged leptons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the lepton pseudorapidity. Values are given first for muons and electrons separately, then combined. The global normalization uncertainty of 3.5\% is not included in the listed uncertainties.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $d\sigma/dy(\omega+\rho\rightarrow\mu\mu) = 80 \pm 6 \mbox{(stat)} \pm 12 \mbox{(syst)}$ nb and $d\sigma/dy(\phi\rightarrow\mu\mu) = 27 \pm 3 \mbox{(stat)} \pm 4 \mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.
Differential cross sections of (OMEGA + RHO) and PHI as functions of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
Differential cross sections of (OMEGA + RHO) and PHI as functions of rapidity. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
N(PHI) / ( N(OMEGA) + N(RHO) ) as a function of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV is reported. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm with jet resolution parameters $R$ of $0.2$ and $0.3$ in pseudo-rapidity $|\eta|<0.5$. The transverse momentum $p_{\rm T}$ of charged particles is measured down to $0.15$ GeV/$c$ which gives access to the low $p_{\rm T}$ fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter $R=0.3$ considered in the analysis. The fragmentation bias introduced by selecting jets with a high $p_{\rm T}$ leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with $R=0.2$ and $R=0.3$ is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with $R<0.3$.
Average values of the number of participating nucleons (Npart), number of binary collisions (Ncoll), and the nuclear overlap function (TAA) for the centrality intervals used in the jet analysis.
Charged jet spectra using two cone radius parameters R = 0.2 and 0.3 and a leading track selection of pT > 0.15 GeV, for centrality 0-10%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.
Charged jet spectra using two cone radius parameters R = 0.2 and 0.3 and a leading track selection of pT > 0.15 GeV, for centrality 10-30%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.
We have measured the probability, n(g->cc~), of a gluon splitting into a charm-quark pair using 1.7 million hadronic Z decays collected by the L3 detector. Two independent methods have been applied to events with a three-jet topology. One method relies on tagging charmed hadrons by identifying a lepton in the lowest energy jet. The other method uses a neural network based on global event shape parameters. Combining both methods, we measure n(g->cc~)= [2.45 +/- 0.29 +/- 0.53]%.
No description provided.
Strange and multistrange baryon production is expected to be enhanced in heavy ion interactions if a phase transition from hadronic matter to a Quark-Gluon Plasma takes place. The production yields of Λ s, Λ s, Ξ − s, and Ξ + s relative to the production of negative particles are presented for sulphur-tungsten interactions at 200 GeV/ c per nucleon. These production yields are compared to those produced in proton-tungsten interactions and the enhancements of strange and multistrange baryons and antibaryons are presented.
Hyperon to negative production ratios with sulphur beam.
Hyperon to negative production ratios with proton beam.
Strange and multistrange baryon enhancements.