Date

Version 3
Search for neutral long-lived particles in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS calorimeter

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 005, 2022.
Inspire Record 2043503 DOI 10.17182/hepdata.115578

A search for decays of pair-produced neutral long-lived particles (LLPs) is presented using 139 fb$^{-1}$ of proton-proton collision data collected by the ATLAS detector at the LHC in 2015-2018 at a centre-of-mass energy of 13 TeV. Dedicated techniques were developed for the reconstruction of displaced jets produced by LLPs decaying hadronically in the ATLAS hadronic calorimeter. Two search regions are defined for different LLP kinematic regimes. The observed numbers of events are consistent with the expected background, and limits for several benchmark signals are determined. For a SM Higgs boson with a mass of 125 GeV, branching ratios above 10% are excluded at 95% confidence level for values of $c$ times LLP mean proper lifetime in the range between 20 mm and 10 m depending on the model. Upper limits are also set on the cross-section times branching ratio for scalars with a mass of 60 GeV and for masses between 200 GeV and 1 TeV.

49 data tables

CalRatio triggers which were available during the LHC Run 2 data-taking, and corresponding integrated luminosity collected in each period. The high-E<sub>T</sub> CalRatio trigger with E<sub>T</sub> > 60 GeV was disabled in 2017 for instantaneous luminosities higher than 1.4 &times; 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>. Two versions of the low-E<sub>T</sub> CalRatio trigger were used, with slight differences in their algorithms. The details are reported in Section 4.

Trigger efficiency for simulated signal events as a function of the LLP p<sub>T</sub> for one of the low-E<sub>T</sub> signal samples for HLT CalRatio triggers seeded by the high-E<sub>T</sub> L1 triggers with E<sub>T</sub> thresholds of 60 GeV and 100 GeV and by the two versions of the low-E<sub>T</sub> L1 triggers. Only statistical uncertainties are shown.

Trigger efficiency for simulated signal events as a function of the LLP p<sub>T</sub> for one of the high-E<sub>T</sub> signal samples for HLT CalRatio triggers seeded by the high-E<sub>T</sub> L1 triggers with E<sub>T</sub> thresholds of 60 GeV and 100 GeV and by the two versions of the low-E<sub>T</sub> L1 triggers. Only statistical uncertainties are shown.

More…

Study of $B_c^+\to J/\psi D_s^+$ and $B_c^+\to J/\psi D_s^{*+}$ decays in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 08 (2022) 087, 2022.
Inspire Record 2044968 DOI 10.17182/hepdata.126990

A study of $B_c^+\to J/\psi D_s^+$ and $B_c^+\to J/\psi D_s^{*+}$ decays using 139 fb$^{-1}$ of integrated luminosity collected with the ATLAS detector from $\sqrt{s} = 13$ TeV $pp$ collisions at the LHC is presented. The ratios of the branching fractions of the two decays to the branching fraction of the $B_c^+\to J/\psi \pi^+$ decay are measured: $\mathcal B(B_c^+\to J/\psi D_s^+)/\mathcal B(B_c^+\to J/\psi \pi^+) = 2.76\pm 0.47$ and $\mathcal B(B_c^+\to J/\psi D_s^{*+})/\mathcal B(B_c^+\to J/\psi \pi^+) = 5.33\pm 0.96$. The ratio of the branching fractions of the two decays is found to be $\mathcal B(B_c^+\to J/\psi D_s^{*+})/\mathcal B(B_c^+\to J/\psi D_s^+) = 1.93\pm0.26$. For the $B_c^+\to J/\psi D_s^{*+}$ decay, the transverse polarization fraction, $\Gamma_{\pm\pm}/\Gamma$, is measured to be $0.70\pm0.11$. The reported uncertainties include both the statistical and systematic components added in quadrature. The precision of the measurements exceeds that in all previous studies of these decays. These results supersede those obtained in the earlier ATLAS study of the same decays with $\sqrt{s} = 7$ and 8 TeV $pp$ collision data. A comparison with available theoretical predictions for the measured quantities is presented.

4 data tables

Measured values of $R_{D_s^+/\pi^+}$, $R_{D_s^{*+}/\pi^+}$, $R_{D_s^{*+}/D_s^+}$ ratios of branching fractions, fraction of transverse polarization $\Gamma_{\pm\pm}/\Gamma$ with their statistical uncertainties and full breakdown of systematic uncertainties. Predictions of various theory calculations are also shown with their uncertainties where available, as well as the estimates based on similar decays of light $B$ mesons.

Parameters of the $B_c^+\to J/\psi D_s^+$ and $B_c^+\to J/\psi D_s^{*+}$ signals obtained with the unbinned extended maximum-likelihood fit to the data. Only the statistical uncertainties are included. No acceptance or efficiency corrections are applied to the signal yields.

Parameters of the $B_c^+\to J/\psi \pi^+$ signal obtained with the unbinned extended maximum-likelihood fit. Only the statistical uncertainties are included. No efficiency correction is applied to the signal yield.

More…

Study of $\phi$-meson production in $p+$Al, $p+$Au, $d+$Au, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 106 (2022) 014908, 2022.
Inspire Record 2050486 DOI 10.17182/hepdata.130267

Small nuclear collisions are mainly sensitive to cold-nuclear-matter effects; however, the collective behavior observed in these collisions shows a hint of hot-nuclear-matter effects. The identified-particle spectra, especially the $\phi$ mesons which contain strange and antistrange quarks and have a relatively small hadronic-interaction cross section, are a good tool to study these effects. The PHENIX experiment has measured $\phi$ mesons in a specific set of small collision systems $p$$+$Al, $p$$+$Au, and $^3$He$+$Au, as well as $d$$+$Au [Phys. Rev. C {\bf 83}, 024909 (2011)], at $\sqrt{s_{_{NN}}}=200$ GeV. The transverse-momentum spectra and nuclear-modification factors are presented and compared to theoretical-model predictions. The comparisons with different calculations suggest that quark-gluon plasma may be formed in these small collision systems at $\sqrt{s_{_{NN}}}=200$ GeV. However, the volume and the lifetime of the produced medium may be insufficient for observing strangeness-enhancement and jet-quenching effects. Comparison with calculations suggests that the main production mechanisms of $\phi$ mesons at midrapidity may be different in $p$$+$Al versus $p/d/$$^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. While thermal quark recombination seems to dominate in $p/d/$$^3$He$+$Au collisions, fragmentation seems to be the main production mechanism in $p$$+$Al collisions.

2 data tables

Invariant transverse momentum spectra measured for $\phi$ mesons in (a) $p$+Al, (b) $p$+Au, and (c) $^{3}$He+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at midrapidity.

Comparison of $\phi$-meson nuclear-modification factors in $p$+Al, $p$+Au, $d$+Au [2], and $^{3}$He+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at midrapidity. The normalization uncertainty from $p$+$p$ of about $9.7 \%$ is not shown [28].


Measurements of second-harmonic Fourier coefficients from azimuthal anisotropies in $p+p, p$+Au $d$+Au, and $^3$He + Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
Phys.Rev.C 107 (2023) 024907, 2023.
Inspire Record 2054927 DOI 10.17182/hepdata.136560

Recently, the PHENIX Collaboration has published second- and third-harmonic Fourier coefficients $v_2$ and $v_3$ for midrapidity ($|\eta|<0.35$) charged hadrons in 0%--5% central $p$$+$Au, $d$ $+$Au, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV utilizing three sets of two-particle correlations for two detector combinations with different pseudorapidity acceptance [Phys. Rev. C {\bf 105}, 024901 (2022)]. This paper extends these measurements of $v_2$ to all centralities in $p$ $+$Au, $d$ $+$Au, and $^3$He$+$Au collisions, as well as $p$$+$$p$ collisions, as a function of transverse momentum ($p_T$) and event multiplicity. The kinematic dependence of $v_2$ is quantified as the ratio $R$ of $v_2$ between the two detector combinations as a function of event multiplicity for $0.5$ $<$ $p_T$ $<$ $1$ and $2$ $<$ $p_T$ $<$ $2.5$ GeV/$c$. A multiphase-transport (AMPT) model can reproduce the observed $v_2$ in most-central to midcentral $d$$+$Au and $^3$He$+$Au collisions. However, the AMPT model systematically overestimates the measurements in $p$ $+$ $p$, $p$ $+$Au, and peripheral $d$$+$Au and $^3$He$+$Au collisions, indicating a higher nonflow contribution in AMPT than in the experimental data. The AMPT model fails to describe the observed $R$ for $0.5$ $<$ $p_T$$<$ $1$ GeV/$c$, but there is qualitative agreement with the measurements for $2$ $<$ $p_T$ $<$ $2.5$ GeV/$c$.

18 data tables

Azimuthal anisotropy $v_2\{BB\}$ as a function of transverse momentum $p_T$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

Azimuthal anisotropy $v_2\{BF\}$ as a function of transverse momentum $p_T$ in $p$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

Azimuthal anisotropy $v_2\{BB\}$ as a function of transverse momentum $p_T$ in $d$+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

More…

Low-$p_T$ direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
Phys.Rev.C 107 (2023) 024914, 2023.
Inspire Record 2057344 DOI 10.17182/hepdata.133218

The measurement of direct photons from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV in the transverse-momentum range $0.4

12 data tables

$R_{\gamma}$ for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical (bar) and systematic uncertainties (box)

$R_{\gamma}$ for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical (bar) and systematic uncertainties (box)

Direct photon spectra for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical and systematic uncertainties, unless the central value is negative (arrows) or is consistent with zero within the statistical uncertainties (arrows with data point). In these cases upper limit with CL = 95$%$ are given.

More…

Nonprompt direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U.A. ; Adare, A. ; et al.
Phys.Rev.C 109 (2024) 044912, 2024.
Inspire Record 2061074 DOI 10.17182/hepdata.129292

The measurement of the direct-photon spectrum from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV is presented by the PHENIX collaboration using the external-photon-conversion technique for 0%--93% central collisions in a transverse-momentum ($p_T$) range of 0.8--10 GeV/$c$. An excess of direct photons, above prompt-photon production from hard-scattering processes, is observed for $p_T<6$ GeV/$c$. Nonprompt direct photons are measured by subtracting the prompt component, which is estimated as $N_{\rm coll}$-scaled direct photons from $p$ $+$ $p$ collisions at 200 GeV, from the direct-photon spectrum. Results are obtained for $0.8

9 data tables

Direct photon $R_{\gamma}$, every 20% centrality

Direct photon $R_{\gamma}$, every 10% centrality

Invariant yield of direct photons, every 10% centrality

More…

First measurement of antideuteron number fluctuations at energies available at the Large Hadron Collider

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
Phys.Rev.Lett. 131 (2023) 041901, 2023.
Inspire Record 2070391 DOI 10.17182/hepdata.136310

The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity ($|\eta| < 0.8$) as a function of collision centrality in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with coalescence calculations, which fail to describe the measurement, in particular if a correlated production of protons and neutrons is assumed. Thermal-statistical model calculations describe the data within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations.

5 data tables

Second order to first order cumulant ratio of the $\overline{d}$ multiplicity distribution as a function of collision centrality in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.

Pearson correlation between the measured $\overline{p}$ and $\overline{d}$ as a function of collision centrality in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.

Dependence of $\overline{p}$-$\overline{d}$ correlation on pseudorapidity acceptance of $\overline{p}$ and $\overline{d}$ selection in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. Results are for 0.0--10.0$\%$ collision centrality.

More…

Measurement of inclusive and leading subjet fragmentation in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2023) 245, 2023.
Inspire Record 2070434 DOI 10.17182/hepdata.133562

This article presents new measurements of the fragmentation properties of jets in both proton-proton (pp) and heavy-ion collisions with the ALICE experiment at the LHC. We report distributions of the fraction $z_r$ of transverse momentum carried by subjets of radius $r$ within jets of radius $R$. Charged-particle jets are reconstructed at midrapidity using the anti-$k_{\rm{T}}$ algorithm with jet radius $R=0.4$, and subjets are reconstructed by reclustering the jet constituents using the anti-$k_{\rm{T}}$ algorithm with radii $r=0.1$ and $r=0.2$. In pp collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the $z_r$ distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet fragmentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The $z_r$ distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark-gluon plasma (QGP). We find no significant modification of $z_r$ distributions in Pb-Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for $z_r<0.95$, as predicted by several jet quenching models. As $z_r \rightarrow 1$ our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP.

13 data tables

Inclusive subjet $z_r$ in pp collisions for $r=0.1$ $80<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<120$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

Inclusive subjet $z_r$ in pp collisions for $r=0.2$ $80<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<120$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

Leading subjet $z_r$ in pp collisions for $r=0.1$ $80<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<120$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

More…

Underlying-event properties in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 023, 2023.
Inspire Record 2071174 DOI 10.17182/hepdata.133032

We report about the properties of the underlying event measured with ALICE at the LHC in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The event activity, quantified by charged-particle number and summed-$p_{\rm T}$ densities, is measured as a function of the leading-particle transverse momentum ($p_{\rm T}^{\rm trig}$). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different $p_{\rm T}$ thresholds (0.15, 0.5, and 1 GeV/$c$) at mid-pseudorapidity ($|\eta|<0.8$). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p$-$Pb collisions, namely, a steep increase with $p_{\rm T}^{\rm trig}$ for low $p_{\rm T}^{\rm trig}$, followed by a saturation at $p_{\rm T}^{\rm trig} \approx 5$ GeV/$c$. The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p$-$Pb collisions for $p_{\rm T}^{\rm trig}>10$ GeV/$c$, whereas for lower $p_{\rm T}^{\rm trig}$ values the event activity is slightly higher in p$-$Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators.

10 data tables

Fig. 4: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 5: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 6a: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Away and Toward regions after the subtraction of Number density $N_{\rm ch}$ and $\Sigma p_{\rm T}$ distributions in the transverse region for pp collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

More…

Measurements of the groomed jet radius and momentum splitting fraction with the soft drop and dynamical grooming algorithms in pp collisions at $\sqrt{s}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2023) 244, 2023.
Inspire Record 2070421 DOI 10.17182/hepdata.133033

This article presents measurements of the groomed jet radius and momentum splitting fraction in pp collisions at $\sqrt{s}=5.02$ TeV with the ALICE detector at the Large Hadron Collider. Inclusive charged-particle jets are reconstructed at midrapidity using the anti-$k_{\rm{T}}$ algorithm for transverse momentum $60< p_{\mathrm{T}}^{\rm{ch\; jet}}<80$ GeV/$c$. We report results using two different grooming algorithms: soft drop and, for the first time, dynamical grooming. For each grooming algorithm, a variety of grooming settings are used in order to explore the impact of collinear radiation on these jet substructure observables. These results are compared to perturbative calculations that include resummation of large logarithms at all orders in the strong coupling constant. We find good agreement of the theoretical predictions with the data for all grooming settings considered.

12 data tables

Groomed jet momentum splitting fraction $z_{{\mathrm{g}}}$ $60<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<80$ GeV/$c$, soft drop $z_{\mathrm{cut}}=0.1, \beta=0$. Note: The first bin corresponds to the Soft Drop untagged fraction. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

Groomed jet momentum splitting fraction $z_{{\mathrm{g}}}$ $60<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<80$ GeV/$c$, soft drop $z_{\mathrm{cut}}=0.1, \beta=1$. Note: The first bin corresponds to the Soft Drop untagged fraction. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

Groomed jet momentum splitting fraction $z_{{\mathrm{g}}}$ $60<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<80$ GeV/$c$, soft drop $z_{\mathrm{cut}}=0.1, \beta=2$. Note: The first bin corresponds to the Soft Drop untagged fraction. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

More…