Showing 10 of 489 results
This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for HMT events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter λ as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 71 ≤ n<sub>ch</sub> < 80 for the minimum-bias (MB) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 231 ≤ n<sub>ch</sub> < 300 for the high-multiplicity track (HMT) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative multiplicity region 3.09 < m<sub>ch</sub> ≤ 3.86. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative k<sub>T</sub> region 400 < k<sub>T</sub> ≤500 MeV. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
Systematic uncertainties (in percent) in the correlation strength, λ, and source radius, R, for the exponential fit of the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), for p<sub>T</sub> > 100 MeV at √s= 13 TeV for the MB and HMT events. The choice of MC generator gives rise to asymmetric uncertainties, denoted by uparrow and downarrow. This asymmetry propagates through to the cumulative uncertainty. The columns under ‘Uncertainty range’ show the range of systematic uncertainty from the fits in the various n<sub>ch</sub> intervals.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the average rescaled charged-particle multiplicity, m<sub>ch</sub>, for |η| < 2.5 and both p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and the high-multiplicity track (HMT) events. The parameters γ and δ resulting from a joint fit to the MB and HMT data are presented. The total uncertainties are shown.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the pair average transverse momentum, k<sub>T</sub>, for various functional forms and for minimum-bias (MB) and high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV. The total uncertainties are shown.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the multiplicity, m<sub>ch</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
The correlation strength, λ, and source radius, R, of the exponential fits to the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), in dependence on the pair transverse momentum, k<sub>T</sub>, intervals for the minimum-bias (MB) and the high-multiplicity track (HMT) events for p<sub>T</sub> > 500 MeV at √s = 13 TeV. Statistical uncertainties for √χ<sup>2</sup>/ndf>1 are corrected by the √χ<sup>2</sup>/ndf. The total uncertainties are shown.
A search for resonances decaying into a W boson and a radion, where the radion decays into two W bosons, is presented. The data analyzed correspond to an integrated luminosity of 138 fb$^{-1}$ recorded in proton-proton collisions with the CMS detector at $\sqrt{s} =$ 13 TeV. One isolated charged lepton is required, together with missing transverse momentum and one or two massive large-radius jets, containing the decay products of either two or one W bosons, respectively. No excess over the background estimation is observed. The results are combined with those from a complementary channel with an all-hadronic final state, described in an accompanying paper. Limits are set on parameters of an extended warped extra-dimensional model. These searches are the first of their kind at the LHC.
Post-fit distributions of the reconstructed $\ell\nu$+jets system ($m_{\mathrm{j}\ell\nu}$, $m_{\mathrm{jj}\ell\nu}$) in data and simulation for SR4.
Observed upper limits at 95\% \CL on the signal cross section $\times$ branching fraction as functions of the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ resonance masses after combinign with an analysis of the all-hadronic final state.
Expected median lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane after combinign with an analysis of the all-hadronic final state.
Expected $+ 1$ s.d. lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane after combinign with an analysis of the all-hadronic final state.
Expected - 1 s.d. lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane after combinign with an analysis of the all-hadronic final state.
Observed lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane after combinign with an analysis of the all-hadronic final state.
Post-fit distributions of the reconstructed $\ell\nu$+jets system ($m_{\mathrm{j}\ell\nu}$, $m_{\mathrm{jj}\ell\nu}$) in data and simulation for SR1.
Post-fit distributions of the reconstructed $\ell\nu$+jets system ($m_{\mathrm{j}\ell\nu}$, $m_{\mathrm{jj}\ell\nu}$) in data and simulation for SR2.
Post-fit distributions of the reconstructed $\ell\nu$+jets system ($m_{\mathrm{j}\ell\nu}$, $m_{\mathrm{jj}\ell\nu}$) in data and simulation for SR3.
Post-fit distributions of the reconstructed $\ell\nu$+jets system ($m_{\mathrm{j}\ell\nu}$, $m_{\mathrm{jj}\ell\nu}$) in data and simulation for SR5.
Post-fit distributions of the reconstructed $\ell\nu$+jets system ($m_{\mathrm{j}\ell\nu}$, $m_{\mathrm{jj}\ell\nu}$) in data and simulation for SR6.
Results are presented from a search for charged-lepton flavor violating (CLFV) interactions in top quark production and decay in pp collisions at a center-of-mass energy of 13 TeV. The events are required to contain one oppositely charged electron-muon pair in the final state, along with at least one jet identified as originating from a bottom quark. The data correspond to an integrated luminosity of 138 fb$^{-1}$, collected by the CMS experiment at the LHC. This analysis includes both the production (q $\to$ e$\mu$t) and decay (t $\to$ e$\mu$q) modes of the top quark through CLFV interactions, with q referring to a u or c quark. These interactions are parametrized using an effective field theory approach. With no significant excess over the standard model expectation, the results are interpreted in terms of vector-, scalar-, and tensor-like CLFV four-fermion effective interactions. Finally, observed exclusion limits are set at 95% confidence levels on the respective branching fractions of a top quark to an e$\mu$ pair and an up (charm) quark of 0.13 $\times$ 10$^{-6}$ (1.31 $\times$ 10$^{-6}$), 0.07 $\times$ 10$^{-6}$ (0.89 $\times$ 10$^{-6}$), and 0.25 $\times$ 10$^{-6}$ (2.59 $\times$ 10$^{-6}$) for vector, scalar, and tensor CLFV interactions, respectively.
The expected and observed upper limits on the signal cross sections.
The expected and observed upper limits on CLFV Wilson coefficients. The Limits on the Wilson coefficients are extracted from the upper limits on the cross sections. Since the cross sections are quadratic functions of the Wilson coefficients, the limits lie on an ellipse given by the coordinate intersections.
The expected and observed upper limits on top quark CLFV branching fractions. The Limits on the top quark CLFV branching fractions are extracted from the upper limits on the Wilson coefficients.
The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e$^\pm\mu^\mp$, e$^+$e$^-$, or $\mu^+\mu^-$). The measurement is performed using 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} =$ 13 TeV during the 2016-2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 $\pm$ 2.5 (stat) $\pm$ 6.3 (syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the $\mathrm{t\bar{t}}\gamma$ production process using the lepton+jets final state.
Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $e\mu$ channel, after the fit to the data.
Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $ee$ channel, after the fit to the data.
Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $\mu\mu$ channel, after the fit to the data.
Measured inclusive fiducial $tt\gamma$ production cross section in the dilepton final state for the different dilepton-flavour channels and combined.
Absolute differential $tt\gamma$ production cross section as a function of $p_{T}(\gamma)$ . The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of $|\eta |(\gamma)$. The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of min $\Delta R(\gamma, \ell)$. The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of $\Delta R(\gamma, \ell_{1})$. The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of $\Delta R(\gamma, \ell_{2})$. The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of min $\Delta R(\gamma, b)$. The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of $|\Delta\eta(\ell\ell)|$. The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of $\Delta \phi(\ell\ell)$. The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of $p_{T}(\ell\ell) $. The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of $p_{T}(\ell_{1})+p_{T}(\ell_{2})$ . The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of min $\Delta R(\ell, j)$. The values provided in the table are not divided by the bin width.
Absolute differential $tt\gamma$ production cross section as a function of $p_{T}(j_{1})$ .
Normalized differential $tt\gamma$ production cross section as a function of $p_{T}(\gamma)$ . The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of $|\eta |(\gamma)$. The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of min $\Delta R(\gamma, \ell)$. The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of $\Delta R(\gamma, \ell_{1})$. The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of $\Delta R(\gamma, \ell_{2})$. The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of min $\Delta R(\gamma, b)$. The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of $|\Delta\eta(\ell\ell)|$. The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of $\Delta \phi(\ell\ell)$. The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of $p_{T}(\ell\ell) $. The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of $p_{T}(\ell_{1})+p_{T}(\ell_{2})$ . The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of min $\Delta R(\ell, j)$. The values provided in the table are not divided by the bin width.
Normalized differential $tt\gamma$ production cross section as a function of $p_{T}(j_{1})$ . The values provided in the table are not divided by the bin width.
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of $p_{T}(\gamma)$ .
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of $p_{T}(\gamma)$ .
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of $|\eta |(\gamma)$.
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of $|\eta |(\gamma)$.
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of min $\Delta R(\gamma, \ell)$.
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of min $\Delta R(\gamma, \ell)$.
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of $\Delta R(\gamma, \ell_{1})$.
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of $\Delta R(\gamma, \ell_{1})$.
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of $\Delta R(\gamma, \ell_{2})$.
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of $\Delta R(\gamma, \ell_{2})$.
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of min $\Delta R(\gamma, b)$.
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of min $\Delta R(\gamma, b)$.
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of $|\Delta\eta(\ell\ell)|$.
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of $|\Delta\eta(\ell\ell)|$.
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of $\Delta \phi(\ell\ell)$.
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of $\Delta \phi(\ell\ell)$.
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of $p_{T}(\ell\ell) $.
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of $p_{T}(\ell\ell) $.
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of $p_{T}(\ell_{1})+p_{T}(\ell_{2})$ .
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of $p_{T}(\ell_{1})+p_{T}(\ell_{2})$ .
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of min $\Delta R(\ell, j)$.
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of min $\Delta R(\ell, j)$.
Correlation matrix of the systematic uncertainty in the absolute differential cross section as a function of $p_{T}(j_{1})$ .
Correlation matrix of the statistical uncertainty in the absolute differential cross section as a function of $p_{T}(j_{1})$ .
Negative log-likelihood difference from the best-fit value for the one-dimensional scans of the Wilson coefficient $c_{tZ}$, using the photon pT distribution from the dilepton analysis. The value of $c^{I}_{tZ}$ is fixed to zero in the fit.
Negative log-likelihood difference from the best-fit value for the one-dimensional scans of the Wilson coefficient $c_{tZ}$, using the combination of photon pT distributions from the dilepton and lepton+jets analyses. The value of $c^{I}_{tZ}$ is fixed to zero in the fit.
Negative log-likelihood difference from the best-fit value for the one-dimensional scans of the Wilson coefficient $c^{I}_{tZ}$, using the photon pT distribution from the dilepton analysis. The value of $c_{tZ}$ is fixed to zero in the fit.
Negative log-likelihood difference from the best-fit value for the one-dimensional scans of the Wilson coefficient $c^{I}_{tZ}$, using the combination of photon pT distributions from the dilepton and lepton+jets analyses. The value of $c_{tZ}$ is fixed to zero in the fit.
Negative log-likelihood difference from the best-fit value for the one-dimensional scans of the Wilson coefficient $c_{tZ}$, using the photon pT distribution from the dilepton analysis. The value of $c^{I}_{tZ}$ is profiled in the fit.
Negative log-likelihood difference from the best-fit value for the one-dimensional scans of the Wilson coefficient $c_{tZ}$, using the combination of photon pT distributions from the dilepton and lepton+jets analyses. The value of $c^{I}_{tZ}$ is profiled in the fit.
Negative log-likelihood difference from the best-fit value for the one-dimensional scans of the Wilson coefficient $c^{I}_{tZ}$, using the photon pT distribution from the dilepton analysis. The value of $c_{tZ}$ is profiled in the fit.
Negative log-likelihood difference from the best-fit value for the one-dimensional scans of the Wilson coefficient $c^{I}_{tZ}$, using the combination of photon pT distributions from the dilepton and lepton+jets analyses. The value of $c_{tZ}$ is profiled in the fit.
Negative log-likelihood difference from the best-fit value as a function of Wilson coefficients $c_{tZ}$ and $c^{I}_{tZ}$ from the interpretation of the dilepton measurement.
Negative log-likelihood difference from the best-fit value as a function of Wilson coefficients $c_{tZ}$ and $c^{I}_{tZ}$ from the interpretation of the dilepton and lepton+jets measurements combined.
One-dimensional 68 and 95% CL intervals obtained for the Wilson coefficients $c_{tZ}$ and $c^{I}_{tZ}$, using the photon $p_{T}$ distribution from the dilepton analysis, or the combination of photon pT distributions from the dilepton and lepton+jets analyses.
Comparison of observed $95\%$ CL intervals for the Wilson coefficients $c_{tZ}$ and $c^{I}_{tZ}$. Results are shown from a CMS ttZ measurement [JHEP 03 (2020) 056], from a CMS ttZ & tZq interpretation [arXiv:2107.13896], from a CMS ttG (lepton+jets) measurement [arXiv:2107.01508], from this measurement, and from a global fit by J. Ellis et al. [JHEP 04 (2021) 279].
A search for Kaluza-Klein excited vector boson resonances, $W_\mathrm{KK}$, decaying in cascade to three W bosons via a scalar radion $R, W_\mathrm{KK}\to WR \to WWW$, with two or three massive jets is presented. The search is performed with proton-proton collision data recorded at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the CERN LHC, during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Two final states are simultaneously probed, one where the two W bosons produced by the R decay are reconstructed as separate, large-radius, massive jets, and one where they are merged in a single large-radius jet. The observed data are in agreement with the standard model expectations. Limits are set on the product of the $W_\mathrm{KK}$ resonance cross section and branching fraction to three W bosons in an extended warped extra-dimensional model and are the first of their kind at the LHC.
Distribution of $m_{\mathrm{jj}}$ for preselected events with $\mathrm{N}_{j}$ = 2
Distribution of $m_{\mathrm{j}}$ for preselected events with $\mathrm{N}_{j}$ = 2
Distribution of the deep-WH value of the highest-mass jet with $m_{\mathrm{j}}$ > 100 GeV for preselected events with $\mathrm{N}_{j}$ = 2
Distribution of $m_{\mathrm{jjj}}$ for preselected events with $\mathrm{N}_{j}$ = 3
Distribution of $m_{\mathrm{j}}$ for preselected events with $\mathrm{N}_{j}$ = 3
Distribution of the deep-WH value of the highest-mass jet with 60 < $m_{\mathrm{j}}$ < 100 GeV for preselected events with $\mathrm{N}_{j}$ = 3
scale factors (SFs) for W, $t^{2}$, and q/g matched jets in the low-$m_{\mathrm{j}}$ and low-$p_{\mathrm{T}}$ (LL) bin, as functions of the deep-W discriminant value.
scale factors (SFs) for W, $t^{2}$, and q/g matched jets in the low-$m_{\mathrm{j}}$ and high-$p_{\mathrm{T}}$ (LH) bin, as functions of the deep-W discriminant value.
scale factors (SFs) for $t^{2}$, $t^{3,4}$, and q/g matched jets in the high-$m_{\mathrm{j}}$ and low-$p_{\mathrm{T}}$ (HL) bin, as functions of the deep-WH discriminant value.
scale factors (SFs) for $t^{2}$, $t^{3,4}$, and q/g matched jets in the high-$m_{\mathrm{j}}$ and high-$p_{\mathrm{T}}$ (HH) bin, as functions of the deep-WH discriminant value.
The deep-W discriminant of the jet with highest mass in the single-lepton sideband for LL samples.
The deep-W discriminant of the jet with highest mass in the single-lepton sideband for LH samples.
The deep-WH discriminant of the jet with highest mass in the single-lepton sideband for HL samples.
The deep-WH discriminant of the jet with highest mass in the single-lepton sideband for HH samples.
Comparison of the distribution of data and simulated backgrounds, as a function of the deep-W discriminant value for the highest-mass jet in CR1, after the scale factors have been applied.
Comparison of the distribution of data and simulated backgrounds, as a function of the deep-WH discriminant value for the highest-mass jet in CR2, after the scale factors have been applied.
Comparison of the distribution of data and simulated backgrounds, as a function of the deep-WH discriminant value for the highest-mass jet in CR3, after the scale factors have been applied.
Comparison of the distribution of data and simulated backgrounds, as a function of the deep-W discriminant value for the highest-mass jet in CR45, after the scale factors have been applied.
Comparison of the distribution of data and simulated backgrounds, as a function of the deep-W discriminant value for the highest-mass jet in CR6, after the scale factors have been applied.
The $m_{\mathrm{j}^{\mathrm{max}}}$ distributions for different jet types for SR1–3 events of the signal with $m_{\mathrm{W}_{\mathrm{KK}}}$ = 2.5 TeV, $m_{\mathrm{R}}$ = 0.2 TeV$ without deep-W (WH) constraints.
The deep-W distribution normalized to unity for the shown components of of the signal with $m_{\mathrm{W}_{\mathrm{KK}}}$ = 2.5 TeV, $m_{\mathrm{R}}$ = 0.2 TeV. The $t^{3,4}$ jets from the preselected sample, normalized to unity, are superimposed to compare shapes with the $R^{3q}$ and $R^{4q}$ distributions.
The deep-WH distribution normalized to unity for the shown components of of the signal with $m_{\mathrm{W}_{\mathrm{KK}}}$ = 2.5 TeV, $m_{\mathrm{R}}$ = 0.2 TeV. The $t^{3,4}$ jets from the preselected sample, normalized to unity, are superimposed to compare shapes with the $R^{3q}$ and $R^{4q}$ distributions.
The $m_{\mathrm{jj}}$ distribution for CR1 for data and simulation.
The $m_{\mathrm{jj}}$ distribution for CR2 for data and simulation.
The $m_{\mathrm{jj}}$ distribution for CR3 for data and simulation.
The $m_{\mathrm{jjj}}$ distribution for CR45 for data and simulation.
The $m_{\mathrm{jjj}}$ distribution for CR6 for data and simulation.
Post-fit distributions of the reconstructed triboson system ($m_{\mathrm{jj}}$) in data and simulation for SR1.
Post-fit distributions of the reconstructed triboson system ($m_{\mathrm{jj}}$) in data and simulation for SR2.
Post-fit distributions of the reconstructed triboson system ($m_{\mathrm{jj}}$) in data and simulation for SR3.
Post-fit distributions of the reconstructed triboson system ($m_{\mathrm{jjj}}$) in data and simulation for SR4.
Post-fit distributions of the reconstructed triboson system ($m_{\mathrm{jjj}}$) in data and simulation for SR5.
Post-fit distributions of the reconstructed triboson system ($m_{\mathrm{jjj}}$) in data and simulation for SR6.
Observed upper limits at $95\%$ CL on the signal cross section $\times$ branching fraction as functions of the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ resonance masses.
Expected median lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane.
Expected $+ 1$ s.d. lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane.
Expected - 1 s.d. lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane.
Observed lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane.
The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a $b$-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.35^{+0.36}_{-0.34}$. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of all Higgs boson candidates with reconstructed $p_T^H$ in the various bins of the dilepton (left), single-lepton resolved (middle) and boosted (right) channels.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Pre-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except for the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor which is not defined pre-fit. The last bin includes the overflow.
Comparison of predicted and observed event yields in each of the control and signal regions in the dilepton channel after the fit to the data. The uncertainty band includes all uncertainties and their correlations.
Comparison of predicted and observed event yields in each of the control and signal regions in the single-lepton channels after the fit to the data. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $120\le p_T^H<200$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $200\le p_T^H<300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the dilepton SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $120\le p_T^H<200$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $200\le p_T^H<300$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton resolved SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 450$ GeV (yield only). The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton boosted SRs after the inclusive fit to the data for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the BDT discriminant in the single-lepton boosted SRs after the inclusive fit to the data for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for ${\Delta R^{{avg}}_{bb}}$ after the inclusive fit to the data in the single-lepton $CR^{5j}_{{\geq}4b\ lo}$ control region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for ${\Delta R^{{avg}}_{bb}}$ after the inclusive fit to the data in the single-lepton $CR^{5j}_{{\geq}4b\ hi}$ control region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit yields of signal ($S$) and total background ($B$) as a function of $\log (S/B)$, compared with data. Final-discriminant bins in all dilepton and single-lepton analysis regions are combined into bins of $\log (S/B)$, with the signal normalised to the SM prediction used for the computation of $\log (S/B)$. The signal is then shown normalised to the best-fit value and the SM prediction. The lower frame reports the ratio of data to background, and this is compared with the expected ${t\bar {t}H}$-signal-plus-background yield divided by the background-only yield for the best-fit signal strength (solid red line) and the SM prediction (dashed orange line).
Comparison between data and prediction for the reconstruction BDT score for the Higgs boson candidate identified using Higgs boson information, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the average $\Delta \eta $ between $b$-tagged jets, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the likelihood discriminant, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the average $\Delta R$ for all possible combinations of $b$-tagged jet pairs, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the reconstructed Higgs boson candidate mass for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit distribution of the reconstructed Higgs boson candidate mass for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Post-fit distribution of the reconstructed Higgs boson candidate mass for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Fitted values of the ${t\bar {t}H}$ signal strength parameter in the individual channels and in the inclusive signal-strength measurement.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the fit. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Pre-fit distribution of the number of jets in the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Pre-fit distribution of the number of jets in the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Pre-fit distribution of the number of jets in the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the Standard Model expectation. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations, except the uncertainty in the $k({t\bar {t}+{\geq }1b})$ normalisation factor that is not defined pre-fit.
Post-fit distribution of the number of jets in the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the number of jets in the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the number of jets in the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the dilepton $SR^{\geq 4j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton resolved $SR^{\geq 6j}_{\geq 4b}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Post-fit distribution of the reconstructed Higgs boson candidate $p_T^H$ for the single-lepton boosted ${{SR}_{{boosted}}}$ signal region. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The last bin includes the overflow.
Signal-strength measurements in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive signal strength.
95% CL simplified template cross-section upper limits in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive limit. The observed limits are shown (solid black lines), together with the expected limits both in the background-only hypothesis (dotted black lines) and in the SM hypothesis (dotted red lines). In the case of the expected limits in the background-only hypothesis, one- and two-standard-deviation uncertainty bands are also shown. The hatched uncertainty bands correspond to the theory uncertainty in the fiducial cross-section prediction in each bin.
The ratios $S/B$ (black solid line, referring to the vertical axis on the left) and $S/\sqrt{B}$ (red dashed line, referring to the vertical axis on the right) for each category in the inclusive analysis in the dilepton channel (left) and in the single-lepton channels (right), where $S$ ($B$) is the number of selected signal (background) events predicted by the simulation and normalised to a luminosity of 139 fb$^{-1}$ .
Comparison between data and prediction for the $\Delta R$ between the Higgs candidate and the ${t\bar {t}}$ candidate system, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the number of $b$-tagged jet pairs with an invariant mass within 30 GeV of 125 GeV, after the inclusive fit to the data in the dilepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the reconstruction BDT score for the Higgs boson candidate identified using Higgs boson information, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the $\Delta R$ between the two highest ${p_{{T}}}$ $b$-tagged jets, after the inclusive fit to the data in the single-lepton resolved channel for $0\le p_T^H<120$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.
Comparison between data and prediction for the sum of $b$-tagging discriminants of jets from Higgs, hadronic top and leptonic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the sum of $b$-tagging discriminants of jets from Higgs, hadronic top and leptonic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the hadronic top candidate invariant mass, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the hadronic top candidate invariant mass, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the fraction of the sum of $b$-tagging discriminants of all jets not associated to the Higgs or hadronic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Comparison between data and prediction for the fraction of the sum of $b$-tagging discriminants of all jets not associated to the Higgs or hadronic top candidates, after the inclusive fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The ${t\bar {t}H}$ signal yield (solid red) is normalised to the fitted $\mu $ value from the inclusive fit. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations. The first (last) bin includes the underflow (overflow).
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $0\le {\hat{p}_{{T}}^{H}}<120$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $120\le {\hat{p}_{{T}}^{H}}<200$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $200\le {\hat{p}_{{T}}^{H}}<300$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for $300\le {\hat{p}_{{T}}^{H}}<450$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
Ranking of the 20 nuisance parameters with the largest post-fit impact on $\mu $ in the STXS fit for ${\hat{p}_{{T}}^{H}}\ge 450$ GeV. Nuisance parameters corresponding to statistical uncertainties in the simulated event samples are not included. The empty blue rectangles correspond to the pre-fit impact on $\mu $ and the filled blue ones to the post-fit impact on $\mu $, both referring to the upper scale. The impact of each nuisance parameter, $\Delta \mu $, is computed by comparing the nominal best-fit value of $\mu $ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\hat{\theta }$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta $ ($\pm \Delta \hat{\theta }$). The black points show the pulls of the nuisance parameters relative to their nominal values, $\theta _0$. These pulls and their relative post-fit errors, $\Delta \hat{\theta }/\Delta \theta $, refer to the lower scale. For experimental uncertainties that are decomposed into several independent sources, NP X corresponds to the X$^{th}$ nuisance parameter, ordered by their impact on $\mu $. The `ljets' (`dilep') label refers to the single-lepton (dilepton) channel.
95% confidence level upper limits on signal-strength measurements in the individual STXS ${\hat{p}_{{T}}^{H}}$ bins, as well as the inclusive signal-strength limit, after the fit used to extract multiple signal-strength parameters. The observed limits are shown (solid black lines), together with the expected limits both in the background-only hypothesis (dotted black lines) and in the SM hypothesis (dotted red lines). In the case of the expected limits in the background-only hypothesis, one- and two-standard-deviation uncertainty bands are also shown.
Post-fit correlation matrix (in percentages) between the $\mu $ values obtained in the STXS bins.
Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of Higgs boson candidates which are truth-matched to ${b\bar {b}}$ decays, with reconstructed $p_T^H$ in the various bins of the dilepton (left), single lepton resolved (middle) and boosted (right) channels.
Pre-fit event yields in the dilepton signal regions and control regions. All uncertainties are included except the $k({t\bar {t}+{\geq }1b})$ uncertainty that is not defined pre-fit. For the ${t\bar {t}H}$ signal, the pre-fit yield values correspond to the theoretical prediction and corresponding uncertainties. `Other sources' refers to s-channel, t-channel, $tW$, $tWZ$, $tZq$, $Z+$ jets and diboson events.
Post-fit event yields in the dilepton signal regions and control regions, after the inclusive fit in all channels. All uncertainties are included, taking into account correlations. For the ${t\bar {t}H}$ signal, the post-fit yield and uncertainties correspond to those in the inclusive signal-strength measurement. `Other sources' refers to s-channel, t-channel, $tW$, $tWZ$, $tZq$, $Z+$ jets and diboson events.
Pre-fit event yields in the single-lepton resolved and boosted signal regions and control regions. All uncertainties are included except the $k({t\bar {t}+{\geq }1b})$ uncertainty that is not defined pre-fit. For the ${t\bar {t}H}$ signal, the pre-fit yield values correspond to the theoretical prediction and corresponding uncertainties. `Other top sources' refers to s-channel, t-channel, $tWZ$ and $tZq$ events.
Post-fit event yields in the single-lepton resolved and boosted signal regions and control regions, after the inclusive fit in all channels. All uncertainties are included, taking into account correlations. For the ${t\bar {t}H}$ signal, the post-fit yield and uncertainties correspond to those in the inclusive signal-strength measurement. `Other top sources' refers to s-channel, t-channel, $tWZ$ and $tZq$ events.
Breakdown of the contributions to the uncertainties in $\mu$. The contributions from the different sources of uncertainty are evaluated after the fit. The $\Delta \mu $ values are obtained by repeating the fit after having fixed a certain set of nuisance parameters corresponding to a group of systematic uncertainties, and then evaluating $(\Delta \mu)^2$ by subtracting the resulting squared uncertainty of $\mu $ from its squared uncertainty found in the full fit. The same procedure is followed when quoting the effect of the ${t\bar {t}+{\geq }1b}$ normalisation. The total uncertainty is different from the sum in quadrature of the different components due to correlations between nuisance parameters existing in the fit.
Fraction (in percentages) of signal events, after SR and CR selections, originating from $b\bar {b}$, $WW$ and other remaining Higgs boson decay modes in the dilepton channel.
Fraction (in percentages) of signal events, after SR and CR selections, originating from $b\bar {b}$, $WW$ and other remaining Higgs boson decay modes in the single-lepton channels.
Predicted SM ${t\bar {t}H}$ cross-section in each of the five STXS ${\hat{p}_{{T}}^{H}}$ bins and signal acceptance times efficiency (including all event selection criteria) in each STXS bin as well as for the inclusive ${\hat{p}_{{T}}^{H}}$ range.
Number of expected signal events before the fit, after each selection requirement applied to enter the dilepton channel $SR^{\geq 4j}_{\geq 4b}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
Number of expected signal events before the fit, after each selection requirement applied to enter the single-lepton channel resolved $SR^{\geq 6j}_{\geq 4b}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
Number of expected signal events before the fit, after each selection requirement applied to enter the single-lepton channel boosted $SR_{boosted}$ region. All ${t\bar {t}H}$ signal events are included, regardless of the $H$ or ${t\bar {t}H}$ decay mode. All object corrections are applied, except for the initial number of events which is calculated using the NLO QCD+EW theoretical prediction. All quoted numbers are rounded to unity. More details on the selection criteria can be found in the text.
Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering - referred to as single-parton scattering - leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/$\psi$ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process - reconstructed through the decays of J/$\psi$ mesons into pairs of oppositely charged muons - with a statistical significance above five standard deviations. We measured the inclusive fiducial cross section to be 272 $^{+141}_{-104}$ (stat) $\pm$ 17 (syst) fb, and compared it to theoretical expectations for triple-J/$\psi$ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross sections, double- and triple-parton scattering are the dominant contributions for the measured process.
Dimuon invariant mass ($m$), proper decay-length ($L$), transverse momentum ($p_{T}$), rapidity ($y$), and azimuthal angle ($\phi$) of each of the three $J/\psi$ candidates measured in the six triple-$J/\psi$ events passing our selection criteria.
Measured DPS effective cross section
$pp \rightarrow J/\psi J/\psi J/\psi X~$ fiducial cross section
Inclusive and differential cross sections of single top quark production in association with a Z boson are measured in proton-proton collisions at a center-of-mass energy of 13 TeV with a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded by the CMS experiment. Events are selected based on the presence of three leptons, electrons or muons, associated with leptonic Z boson and top quark decays. The measurement yields an inclusive cross section of 87.9 $_{-7.3}^{+7.5}$ (stat) $_{-6.0}^{+7.3}$ (syst) fb for a dilepton invariant mass greater than 30 GeV, in agreement with standard model (SM) calculations and the most precise determination to date. The ratio between the cross sections for the top quark and the top antiquark production in association with a Z boson is measured as 2.37 $_{-0.42}^{+0.56}$ (stat) ${}_{-0.13}^{+0.27}$ (syst). Differential measurements at parton and particle levels are performed for the first time. Several kinematic observables are considered to study the modeling of the process. Results are compared to theoretical predictions with different assumptions on the source of the initial-state b quark and found to be in agreement, within the uncertainties. Additionally, the spin asymmetry, which is sensitive to the top quark polarization, is determined from the differential distribution of the polarization angle at parton level to be 0.54 $\pm$ 0.16 (stat) $\pm$ 0.06 (syst), in agreement with SM predictions.
Numerical results of inclusive cross section measurements. Each row represents a measurement: "tZq" for fully inclusive, "tZq_top" for the top quark channel, "tZq_antitop" for the top antiquark channel, "ratio" for the ratio measurement. The columns are the central value, statistical error up/down, systematic error up/down. All values are in fb, except for the ratio (dimensionless).
Numerical representation of impact plot.
Simulated signal, total background, and observed data in the signal category with exactly 1 b jet and 2-3 jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the prefit version.
Simulated signal, total background, and observed data in the signal category with exactly 1 b jet and 4 or more jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the prefit version.
Simulated signal, total background, and observed data in the signal category with 2 or more b jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the prefit version.
Simulated signal, total background, and observed data in the signal category with exactly 1 b jet and 2-3 jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the postfit version.
Simulated signal, total background, and observed data in the signal category with exactly 1 b jet and 4 or more jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the postfit version.
Simulated signal, total background, and observed data in the signal category with 2 or more b jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the postfit version.
Absolute differential cross sections as a function of the transverse momentum of the Z boson candidate at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the Z boson candidate at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the Z boson candidate at parton level.
Absolute differential cross sections as a function of the transverse momentum of the Z boson candidate at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the Z boson candidate at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the Z boson candidate at particle level.
Absolute differential cross sections as a function of the transverse momentum of the recoiling jet at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the recoiling jet at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the recoiling jet at particle level.
Absolute differential cross sections as a function of the absolute pseudorapidity of the recoiling jet at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the absolute pseudorapidity of the recoiling jet at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the absolute pseudorapidity of the recoiling jet at particle level.
Absolute differential cross sections as a function of the difference in azimuthal angle of the leptons, associated to the Z boson candidate at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the difference in azimuthal angle of the leptons, associated to the Z boson candidate at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the difference in azimuthal angle of the leptons, associated to the Z boson candidate at parton level.
Absolute differential cross sections as a function of the difference in azimuthal angle of the leptons, associated to the Z boson candidate at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the difference in azimuthal angle of the leptons, associated to the Z boson candidate at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the difference in azimuthal angle of the leptons, associated to the Z boson candidate at particle level.
Absolute differential cross sections as a function of the transverse momentum of the leptons, associated to the top candidate at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the leptons, associated to the top candidate at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the leptons, associated to the top candidate at parton level.
Absolute differential cross sections as a function of the transverse momentum of the leptons, associated to the top candidate at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the leptons, associated to the top candidate at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the leptons, associated to the top candidate at particle level.
Absolute differential cross sections as a function of the invariant mass of the three-lepton system at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the invariant mass of the three-lepton system at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the invariant mass of the three-lepton system at parton level.
Absolute differential cross sections as a function of the invariant mass of the three-lepton system at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the invariant mass of the three-lepton system at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the invariant mass of the three-lepton system at particle level.
Absolute differential cross sections as a function of the transverse momentum of the top candidate at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the top candidate at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the top candidate at parton level.
Absolute differential cross sections as a function of the transverse momentum of the top candidate at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the top candidate at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the transverse momentum of the top candidate at particle level.
Absolute differential cross sections as a function of the invariant mass of the top-Z system at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the invariant mass of the top-Z system at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the invariant mass of the top-Z system at parton level.
Absolute differential cross sections as a function of the invariant mass of the top-Z system at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the invariant mass of the top-Z system at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the invariant mass of the top-Z system at particle level.
Absolute differential cross sections as a function of the cosine of the top polarization angle, measured in respect to the spectator quark at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the cosine of the top polarization angle, measured in respect to the spectator quark at parton level.
Covariance matrix for the measurement of the differential cross sections as a function of the cosine of the top polarization angle, measured in respect to the spectator quark at parton level.
Absolute differential cross sections as a function of the cosine of the top polarization angle, measured in respect to the recoiling jet at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the cosine of the top polarization angle, measured in respect to the recoiling jet at particle level.
Covariance matrix for the measurement of the differential cross sections as a function of the cosine of the top polarization angle, measured in respect to the recoiling jet at particle level.
Normalized differential cross sections as a function of the transverse momentum of the Z boson candidate at parton level.
Normalized differential cross sections as a function of the transverse momentum of the Z boson candidate at particle level.
Normalized differential cross sections as a function of the transverse momentum of the recoiling jet at parton level.
Normalized differential cross sections as a function of the absolute pseudorapidity of the recoiling jet at particle level.
Normalized differential cross sections as a function of the difference in azimuthal angle of the leptons, associated to the Z boson candidate at parton level.
Normalized differential cross sections as a function of the difference in azimuthal angle of the leptons, associated to the Z boson candidate at particle level.
Normalized differential cross sections as a function of the transverse momentum of the leptons, associated to the top candidate at parton level.
Normalized differential cross sections as a function of the transverse momentum of the leptons, associated to the top candidate at particle level.
Normalized differential cross sections as a function of the invariant mass of the three-lepton system at parton level.
Normalized differential cross sections as a function of the invariant mass of the three-lepton system at particle level.
Normalized differential cross sections as a function of the transverse momentum of the top candidate at parton level.
Normalized differential cross sections as a function of the transverse momentum of the top candidate at particle level.
Normalized differential cross sections as a function of the invariant mass of the top-Z system at parton level.
Normalized differential cross sections as a function of the invariant mass of the top-Z system at particle level.
Normalized differential cross sections as a function of the cosine of the top polarization angle, measured in respect to the spectator quark at parton level.
Normalized differential cross sections as a function of the cosine of the top polarization angle, measured in respect to the recoiling jet at particle level.
Likelihood scan of the top quark spin asymmetry.
A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb$^{-1}$ collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant $\mathrm{t\bar{t}}$ background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 $\pm$ 4 (stat) $\pm$ 12 (syst) pb, consistent with the standard model.
The observed and theoretical cross section. In the observed, the first uncertainty is statistical, the second uncertianty is the systematic. In the expected, the first uncertainty is due to scale variations, the second due to the choice of PDF.
The systematic sources considered in the analysis and their relative contribution to the observed uncertainty. The uncertainties are divided by normalization, experimental, theoretical and statistical uncertainties, with each section ordered by their contribution to the total uncertainty.
Measurements of differential and double-differential cross sections of top quark pair ($\text{t}\overline{\text{t}}$) production are presented in the lepton+jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum $p_\text{T}$, where the top quark decay products can be identified as separated jets and isolated leptons, and with high $p_\text{T}$, where the decay products are collimated and overlap. The measurements are based on proton-proton collision data at $\sqrt{s} = $ 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive $\text{t}\overline{\text{t}}$ production cross section is measured to be $\sigma_{\text{t}\overline{\text{t}}} = $ 791 $\pm$ 25 pb, which constitutes the most precise measurement in the lepton+jets channel to date.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.