DIFFERENTIAL CROSS-SECTIONS FOR PROTON COMPTON SCATTERING AT INCIDENT PHOTON ENERGIES BETWEEN 900-MeV AND 1150-MEV

Ishii, T. ; Egawa, K. ; Imanishi, A. ; et al.
Nucl.Phys.B 254 (1985) 458-474, 1985.
Inspire Record 218918 DOI 10.17182/hepdata.33788

Differential cross sections of proton Compton scattering have been measured in the angular range between 50° and 130° at incident photon energies from 900 MeV to 1150 MeV. A sharp dip in the angular distribution found by a Bonn group at 110° in the photon energy region around 900 MeV is not observed in the present measurement. A new dip-bump structure is found at photon energies above 1050 MeV, which is similar to that for pion-nucleon scattering.

12 data tables

No description provided.

No description provided.

No description provided.

More…

PROTON COMPTON SCATTERING AT BACKWARD ANGLES IN THE ENERGY RANGE FROM 400-MeV TO 1050-MEV

Wada, Y. ; Egawa, K. ; Imanishi, A. ; et al.
Nucl.Phys.B 247 (1984) 313-338, 1984.
Inspire Record 215373 DOI 10.17182/hepdata.33842

Differential cross sections of proton Compton scattering have been measured in the energy range between 400 MeV and 1050 MeV at C.M.S. angles of 150° and 160°.

3 data tables

No description provided.

No description provided.

No description provided.


Coulomb-Nuclear Interference in pi+- p and K+- p Elastic Scattering Below 3-GeV: Measurements, Real Parts and K+- p Dispersion Relations

Baillon, P. ; Bricman, C. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 105 (1976) 365-430, 1976.
Inspire Record 101037 DOI 10.17182/hepdata.13243

The differential cross sections for π + p elastic scattering at0.6, 1.0, 1.5, 2.0, GeV/ c for π - p at 1.0, 1.5, 2.0 GeV/ c , for K - p at 1.2, 1.8, 2.6 GeV/ c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/ c have been measured with an overall accuracy ofthe order of 1 to 2% in an electronics experiment over the angular region corresponding to momentum transfer t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, we have determined the magnitude and sign of the real part of the scattering amplitude near t = 0. The K ± p real parts have been used in a dispersion relation to derive the value of the KNΛ coupling constant.

20 data tables

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

More…

Proton form factors from elastic electron-proton scattering

Janssens, T. ; Hofstadter, R. ; Hughes, E.B. ; et al.
Phys.Rev. 142 (1966) 922-931, 1966.
Inspire Record 49127 DOI 10.17182/hepdata.26698

Absolute measurements of the elastic electron-proton cross section have been made with a precision of about 4% for values of the square of the four-momentum transfer, q2, in the range 6.0 to 30.0 F−2 and for electron scattering angles in the range 45° to 145°. To within the experimental errors, it is found that the charge and magnetic form factors of the proton have a common dependence on q2 when normalized to unity at q2=0, and that an accurate representation of the behavior of the form factor and that of the cross sections themselves can be given in terms of a three-pole approximation to the dispersion theory of nucleon form factors.

27 data tables

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

More…