Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

1 data table match query

5-jet rate for the Durham Algorithm.


Di-jet production in gamma-gamma collisions at LEP2

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 58 (2008) 531-541, 2008.
Inspire Record 806241 DOI 10.17182/hepdata.51688

The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k_T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.

4 data tables match query

Distribution of the total energy outside the reconstructed jets for the completed data samples. Also tabulated is the estimated background.

Distribution of the total energy outside the reconstructed jets for the 'Dir' domain. Also tabulated is the estimated background.

Distribution of the total energy outside the reconstructed jets for the 'SR' domain. Also tabulated is the estimated background.

More…

Measurement of the proton form factor by studying $e^{+} e^{-}\rightarrow p\bar{p}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 91 (2015) 112004, 2015.
Inspire Record 1358937 DOI 10.17182/hepdata.73442

Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of $e^{+}e^{-}\rightarrow p\bar{p}$ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal $(|G_{E}|= |G_{M}|)$. In addition, the ratio of electric to magnetic form factors, $|G_{E}/G_{M}|$, and $|G_{M}|$ are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at $\sqrt{s}=$ 2232.4 and 2400.0 MeV and a combined sample at $\sqrt{s}$ = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\%. The $|G_{E}/G_{M}|$ ratios are close to unity and consistent with BaBar results in the same $q^{2}$ region, which indicates the data are consistent with the assumption that $|G_{E}|=|G_{M}|$ within uncertainties.

1 data table match query

Summary of the Born cross section $\sigma_\text{Born}$, the effective FF $|G|$, and the related variables used to calculate the Born cross sections at the different c.m.energies $\sqrt{s}$, where $N_\text{obs}$ is the number of candidate events, $N_\text{bkg}$ is the estimated background yield, $\varepsilon^\prime=\varepsilon\times(1+\delta)$ is the product of detection efficiency $\varepsilon$ and the radiative correction factor $(1+\delta)$, and $L$ is the integrated luminosity. The first errors are statistical, and the second systematic.


Measurement of the $e^{+}e^{-} \to \eta J/\psi$ cross section and search for $e^{+}e^{-} \to \pi^{0} J/\psi$ at center-of-mass energies between 3.810 and 4.600~GeV

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 91 (2015) 112005, 2015.
Inspire Record 1355215 DOI 10.17182/hepdata.73336

Using data samples collected with the BESIII detector operating at the BEPCII collider at center-of-mass energies from 3.810 to 4.600 GeV, we perform a study of $e^{+}e^{-} \to \eta J/\psi$ and $\pi^0 J/\psi$. Statistically significant signals of $e^{+}e^{-} \to \eta J/\psi$ are observed at $\sqrt{s}$ = 4.190, 4.210, 4.220, 4.230, 4.245, 4.260, 4.360 and 4.420 GeV, while no signals of $e^{+}e^{-} \to \pi^{0} J/\psi$ are observed. The measured energy-dependent Born cross section for $e^{+}e^{-} \to \eta J/\psi$ shows an enhancement around 4.2~GeV. The measurement is compatible with an earlier measurement by Belle, but with a significantly improved precision.

3 data tables match query

Results on $e^{+}e^{-}\to\eta J/\psi$ in data samples in which a signal is observed with a statistical significance larger than $5\sigma$. The table shows the CM energy $\sqrt{s}$, integrated luminosity $\mathcal{L}_\mathrm{int}$, number of observed $\eta$ events $N^\mathrm{obs}_{\eta}(\mu^{+}\mu^{-})$/$N^\mathrm{obs}_{\eta}(e^{+}e^{-})$ from the fit, efficiency $\epsilon_{\mu}/\epsilon_{e}$, radiative correction factor $(1+\delta^{r})$, vacuum polarization factor $(1+\delta^{v})$, Born cross section $\sigma^{B}(\mu^{+}\mu^{-})$/$\sigma^{B}(e^{+}e^{-})$ and combined Born cross section $\sigma^{B}_\mathrm{Com}$. The first uncertainties are statistical and the second systematic.

Upper limits of $e^{+}e^{-} \to \eta J/\psi$ using the $\mu^{+}\mu^{-}$ mode. The table shows the CM energy $\sqrt{s}$, integrated luminosity $\mathcal{L}_\mathrm{int}$, number of observed $\eta$ events $N^\mathrm{sg}_{\eta}$, number of background from $\eta$ sideband $N^\mathrm{sb}_{\eta}$, and from $J/\psi$ sideband $N^\mathrm{sb}_{J/\psi}$, efficiency $\epsilon$, upper limit of signal number with the consideration of selection efficiency $N^\mathrm{up}_{\eta}/\epsilon$ (at the $90\%$ C.L.), radiative correction factor $(1+\delta^{r})$, vacuum polarization factor $(1+\delta^{v})$, Born cross section $\sigma^{B}$ and upper limit on the Born cross sections $\sigma^{B}_\mathrm{up}$ (at the $90\%$ C.L.). The first uncertainties are statistical and the second systematic.

Upper limits of $e^{+}e^{-} \to \pi^{0} J/\psi$. The table shows the number of observed events in the $\pi^{0}$ signal region $N^\mathrm{sg}$, number of events in $\pi^{0}$ sideband $N^\mathrm{sb}_{\pi^{0}}$, and in $J/\psi$ sideband $N^\mathrm{sb}_{J/\psi}$, efficiency $\epsilon$, the upper limit of signal events with the consideration of the selection efficiency $N^\mathrm{up}(\mu^{+}\mu^{-})/\epsilon$ (at the $90\%$ C.L.) and the upper limit of Born cross sections $\sigma^{B}_\mathrm{up}$ (at the $90\%$ C.L.).


Search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 92 (2015) 012008, 2015.
Inspire Record 1366025 DOI 10.17182/hepdata.73692

Using data samples collected at center of mass energies of $\sqrt{s}$ = 4.009, 4.226, 4.257, 4.358, 4.416 and 4.599 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$. No signal is observed, and upper limits on the cross section $\sigma(e^{+}e^{-}\rightarrow J/\psi \eta \pi^{0})$ at the 90\% confidence level are determined to be 3.6, 1.7, 2.4, 1.4, 0.9 and 1.9 pb, respectively.

1 data table match query

Results on $e^{+}e^{-}\rightarrow J/\psi\eta\pi^{0}$. Listed in the table are the integrated luminosity $\cal{L}$, radiative correction factor (1+$\delta^{r}$) taken from QED calculation assuming the $Y(4260)$ cross section follows a Breit$-$Wigner line shape, vacuum polarization factor (1+$\delta^{v}$), average efficiency ($\epsilon^{ee}{\cal B}^{ee}$ + $\epsilon^{\mu\mu}{\cal B}^{\mu\mu}$), number of observed events $N^\text{obs}$, number of estimated background events $N^\text{bkg}$, the efficiency corrected upper limits on the number of signal events $N^\text{up}$, and upper limits on the Born cross section $\sigma^\text{Born}_\text{UL}$ (at the 90 $\%$ C.L.) at each energy point.


Evidence for $e^+e^-\to\gamma\chi_{c1, 2}$ at center-of-mass energies from 4.009 to 4.360 GeV

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Chin.Phys.C 39 (2015) 041001, 2015.
Inspire Record 1329785 DOI 10.17182/hepdata.72880

Using data samples collected at center-of-mass energies of $\sqrt{s}$ = 4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process $e^+e^-\to\gamma\chi_{cJ}$ $(J = 0, 1, 2)$ and find evidence for $e^+e^-\to\gamma\chi_{c1}$ and $e^+e^-\to\gamma\chi_{c2}$ with statistical significances of 3.0$\sigma$ and 3.4$\sigma$, respectively. The Born cross sections $\sigma^{B}(e^+e^-\to\gamma\chi_{cJ})$, as well as their upper limits at the 90% confidence level are determined at each center-of-mass energy.

3 data tables match query

The results on $e^+e^-\to\gamma\chi_{c0}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points. Numbers taken from journal version: some slight differences with respect to arXiv:1411.6336v1 in last two columns.

The results on $e^+e^-\to\gamma\chi_{c1}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points.

The results on $e^+e^-\to\gamma\chi_{c2}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points.


Observation of $Z_c(3900)^{0}$ in $e^+e^-\to\pi^0\pi^0 J/\psi$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.Lett. 115 (2015) 112003, 2015.
Inspire Record 1377204 DOI 10.17182/hepdata.73771

Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.

1 data table match query

Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.


Version 2
Measurement of the inclusive and differential $\mathrm{t\overline{t}}\gamma$ cross sections in the single-lepton channel and EFT interpretation at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 180, 2021.
Inspire Record 1876579 DOI 10.17182/hepdata.102876

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set, corresponding to an integrated luminosity of 137 fb$^{-1}$, was recorded by the CMS experiment during the 2016-2018 data taking of the LHC. The measurements are performed in a fiducial volume defined at the particle level. Events with an isolated, highly energetic lepton, at least three jets from the hadronization of quarks, among which at least one is b tagged, and one isolated photon are selected. The inclusive fiducial $\mathrm{t\overline{t}}\gamma$ cross section, for a photon with transverse momentum greater than 20 GeV and pseudorapidity $\lvert \eta\rvert$$\lt$ 1.4442, is measured to be 798 $\pm$ 7 (stat) $\pm$ 48 (syst) fb, in good agreement with the prediction from the standard model at next-to-leading order in quantum chromodynamics. The differential cross sections are also measured as a function of several kinematic observables and interpreted in the framework of the standard model effective field theory (EFT), leading to the most stringent direct limits to date on anomalous electromagnetic dipole moment interactions of the top quark and the photon.

2 data tables match query

The measured inclusive ttgamma cross section in the fiducial phase space compared to the prediction from simulation using Madgraph_aMC@NLO at a center-of-mass energy of 13 TeV.

The measured inclusive ttgamma cross section in the fiducial phase space compared to the prediction from simulation using Madgraph_aMC@NLO at a center-of-mass energy of 13 TeV.


Measurement of single top-quark production in the s-channel in proton$-$proton collisions at $\mathrm{\sqrt{s}=13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 191, 2023.
Inspire Record 2153660 DOI 10.17182/hepdata.133620

A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.

1 data table match query

Nuisance parameters ranked according to their post-fit impacts on the best-fit value of the ratio $\mu$ of the measured cross-section to the predicted cross-section. In the figure, only the 20 nuisance parameters with the largest post-fit impacts are shown. The empty (solid) blue rectangles illustrate the pre-fit (post-fit) impact on $\mu$, corresponding to the upper axis. The pre-fit (post-fit) impact of each nuisance parameter, $\Delta\mu$, is calculated as the difference in the fitted value of $\mu$ between the nominal fit and the fit when fixing the corresponding nuisance parameter to $\hat{\theta}\pm\Delta\theta$ ($\hat{\theta}\pm\Delta\hat{\theta}$), where $\hat{\theta}$ is the best-fit value of the nuisance parameter and $\Delta\theta$ ($\Delta\hat{\theta}$) is its pre-fit (post-fit) uncertainty. Several systematic uncertainties are split into different nuisance parameters, which are indicated by NP. JES (JER) indicates jet energy scale (resolution), and $\gamma$ indicates a nuisance parameter associated to the MC statistics in one of the 18 bins numbered from 0 to 17. The black points show the best-fit values of the nuisance parameters, with the error bars representing the post-fit uncertainties. Each nuisance parameter is shown wrt. its nominal value, $\theta_0$, and in units of its pre-fit uncertainty, except the free-floating normalisation factors of the $t\bar{t}$ and $W$+jets backgrounds, and the parameters associated to the MC statistics in each bin, for which the post-fit values and uncertainties are shown.


Measurement of the differential cross-sections of inclusive, prompt and non-prompt J/psi production in proton-proton collisions at sqrt(s) = 7 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 850 (2011) 387-444, 2011.
Inspire Record 896268 DOI 10.17182/hepdata.61590

The inclusive J/psi production cross-section and fraction of J/psi mesons produced in B-hadron decays are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector at the LHC, as a function of the transverse momentum and rapidity of the J/psi, using 2.3 pb-1 of integrated luminosity. The cross-section is measured from a minimum pT of 1 GeV to a maximum of 70 GeV and for rapidities within |y| < 2.4 giving the widest reach of any measurement of J/psi production to date. The differential production cross-sections of prompt and non-prompt J/psi are separately determined and are compared to Colour Singlet NNLO*, Colour Evaporation Model, and FONLL predictions.

1 data table match query

Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute J/psi rapidities within 0.75<|y|<1.5. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J/psi.