We report the measurements of proton-deuteron ($p$-$d$) and deuteron-deuteron ($d$-$d$) correlation functions in Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 3 GeV using fixed-target mode with the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). For the first time, the source size ($R_{G}$), scattering length ($f_{0}$), and effective range ($d_{0}$) are extracted from the measured correlation functions with a simultaneous fit. The spin-averaged $f_0$ for $p$-$d$ and $d$-$d$ interactions are determined to be -5.28 $\pm$ 0.11(stat.) $\pm$ 0.82(syst.) fm and -2.62 $\pm$ 0.02(stat.) $\pm$ 0.24(syst.) fm, respectively. The measured $p$-$d$ interaction is consistent with theoretical calculations and low-energy scattering experiment results, demonstrating the feasibility of extracting interaction parameters using the femtoscopy technique. The reasonable agreement between the experimental data and the calculations from the transport model indicates that deuteron production in these collisions is primarily governed by nucleon coalescence.
Proton-Deuteron correlation function in 3 GeV Au+Au collisions.
Deuteron-Deuteron correlation function in 3 GeV Au+Au collisions.
Source size of p-d and d-d correlation function
We report the differential yields at mid-rapidity of the Breit-Wheeler process ($\gamma\gamma\rightarrow e^{+}e^{-}$) in peripheral Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}} = $ 54.4 GeV and 200 GeV with the STAR experiment at RHIC, as a function of energy $\sqrt{s_{_{\rm{NN}}}}$, $e^{+}e^{-}$ transverse momentum $p_{\rm T}$, $p_{\rm T}^{2}$, invariant mass $M_{ee}$ and azimuthal angle. In the invariant mass range of 0.4 $<$$M_{ee}$$<$ 2.6 GeV/$c^{2}$ at low transverse momentum ($p_{\rm T}$$ < $0.15 GeV/$c$), the yields increase while the pair $\sqrt{\langle p_{\rm T}^{2} \rangle}$ decreases with increasing $\sqrt{s_{_{\rm{NN}}}}$, a feature is correctly predicted by the QED calculation. The energy dependencies of the measured quantities are sensitive to the nuclear form factor, infrared divergence and photon polarization. The data are compiled and used to extract the charge radius of the Au nucleus.
'54.4 GeV, Centrality: 40-60%'
'54.4 GeV, Centrality: 60-80%'
'54.4 GeV, Centrality: 80-100%'
We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=3$ GeV with the STAR experiment at RHIC. $K^0_S$ meson and $\Lambda$ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of $\Lambda$ and $K^0_S$ are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4$\pi$ yields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations.
dN/dy of lambda for different centrality bins.
dN/dy of Ks0 for different centrality bins.
Rapidity dependence of Lambda/p for different centrality bins.
In heavy-ion collision experiments, the global collectivity of final-state particles can be quantified by anisotropic flow coefficients ($v_n$). The first-order flow coefficient, also referred to as the directed flow ($v_{1}$), describes the collective sideward motion of produced particles and nuclear fragments in heavy-ion collisions. It carries information on the very early stage of the collision, especially at large pseudorapidity ($\eta$), where it is believed to be generated during the nuclear passage time. Directed flow therefore probes the onset of bulk collective dynamics during thermalization, providing valuable experimental guidance to models of the pre-equilibrium stage. In 2018, the Event Plane Detector (EPD) was installed in STAR and used for the Beam Energy Scan phase-II (BES-II) data taking. The combination of EPD ($2.1 <|\eta|< 5.1$) and high-statistics BES-II data enables us to extend the $v_{1}$ measurement to the forward and backward $\eta$ regions. In this paper, we present the measurement of $v_{1}$ over a wide $\eta$ range in Au+Au collisions at $\sqrt{s_{NN}}=$ 19.6 and 27 GeV using the STAR EPD. The results of the analysis at $\sqrt{s_{NN}}=$19.6 GeV exhibit excellent consistency with the previous PHOBOS measurement, while elevating the precision of the overall measurement. The increased precision of the measurement also revealed finer structures in heavy-ion collisions, including a potential observation of the first-order event-plane decorrelation. Multiple physics models were compared to the experimental results. Only a transport model and a three-fluid hybrid model can reproduce a sizable $v_{1}$ at large $\eta$ as was observed experimentally. The model comparison also indicates $v_{1}$ at large $\eta$ might be sensitive to the QGP phase transition.
Directed flow vs pseudorapidity.
Directed flow vs pseudorapidity.
Directed flow vs pseudorapidity.
With the STAR experiment at the BNL Relativisic Heavy Ion Collider, we characterize $\sqrt{s_\mathrm{NN}}$ = 200 GeV p+Au collisions by event activity (EA) measured within the pseudorapidity range $eta$$in$ [-5, -3.4] in the Au-going direction and report correlations between this EA and hard- and soft- scale particle production at midrapidity ($\eta$$\in$ [-1, 1]). At the soft scale, charged particle production in low-EA p+Au collisions is comparable to that in p+p collisions and increases monotonically with increasing EA. At the hard scale, we report measurements of high transverse momentum (pT) jets in events of different EAs. In contrast with the soft particle production, high-pT particle production and EA are found to be inversely related. To investigate whether this is a signal of jet quenching in high-EA events, we also report ratios of pT imbalance and azimuthal separation of dijets in high- and low-EA events. Within our measurement precision, no significant differences are observed, disfavoring the presence of jet quenching in the highest 30% EA p+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 200 GeV.
Distributions of Event Activity (as measured by the BBC) from MB and HT events with the latter satisfying an offline trigger of $E_\mathrm{T}^\mathrm{trig}>4 \mathrm{GeV}$.
Density of charged particles with $p_\mathrm{T}>0.2$ GeV/$c$ and $|\eta|\le0.9$ in ten ranges of EA for MB events and HT events selected with several offline trigger values.
Charged particle density as a function of EA, UE $\eta$, and $p_\mathrm{T,jet}^\mathrm{lead}$ for HT ($E_\mathrm{T}^\mathrm{trig}>4$ GeV) events with $p_\mathrm{T,jet}^\mathrm{raw,lead}>4~\mathrm{GeV}/c$.
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.
Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.
In a Quark-Gluon Plasma (QGP), the fundamental building blocks of matter, quarks and gluons, are under extreme conditions of temperature and density. A QGP could exist in the early stages of the Universe, and in various objects and events in the cosmos. The thermodynamic and hydrodynamic properties of the QGP are described by Quantum Chromodynamics (QCD) and can be studied in heavy-ion collisions. Despite being a key thermodynamic parameter, the QGP temperature is still poorly known. Thermal lepton pairs ($e^+e^-$ and $\mu^+\mu^-$) are ideal penetrating probes of the true temperature of the emitting source, since their invariant-mass spectra suffer neither from strong final-state interactions nor from blue-shift effects due to rapid expansion. Here we measure the QGP temperature using thermal $e^+e^-$ production at the Relativistic Heavy Ion Collider (RHIC). The average temperature from the low-mass region (in-medium $\rho^0$ vector-meson dominant) is $(1.99 \pm 0.24) \times 10^{12}$ K, consistent with the chemical freeze-out temperature from statistical models and the phase transition temperature from LQCD. The average temperature from the intermediate mass region (above the $\rho^0$ mass, QGP dominant) is significantly higher at $(3.40 \pm 0.55)\times 10^{12}$ K. This work provides essential experimental thermodynamic measurements to map out the QCD phase diagram and understand the properties of matter under extreme conditions.
The inclusive dielectron invariant mass spectra of 27 GeV in 0-80% centrality.
The inclusive dielectron invariant mass spectra of 54.4 GeV in 0-80% centrality.
The charged multiplicity normalzied excess yield of 27 GeV in 0-80% centrality.
The central exclusive production of charged-hadron pairs in pp collisions at a centre-of-mass energy of 13 TeV is examined, based on data collected in a special high-$\beta^*$ run of the LHC. The nonresonant continuum processes are studied with the invariant mass of the centrally produced two-pion system in the resonance-free region, $m_{\pi^+\pi^-}$$\lt$ 0.7 GeV or $m_{\pi^+\pi^-}$$\gt$ 1.8 GeV. Differential cross sections as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta, and $m_{\pi^+\pi^-}$ are measured in a wide region of scattered proton transverse momenta, between 0.2 and 0.8 GeV, and for pion rapidities $\lvert y\rvert$$\lt$ 2. A rich structure of interactions related to double-pomeron exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between the protons from the interference between the bare and the rescattered amplitudes. After model tuning, various physical quantities are determined that are related to the pomeron cross section, proton-pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of diffractive eigenstates of the proton.
Distributions of $\mathrm{d}^3\sigma / \mathrm{d}p_\mathrm{1,T} dp_\mathrm{2,T}\mathrm {d}\phi$ as functions of $\phi$ in the $\pi^+\pi^-$ nonresonant region ($0.35 < m < 0.65\,\mathrm{GeV}$) in several $(p_\mathrm{1,T}, p_\mathrm{2,T})$ bins, in units of $\mu\mathrm{b}/\mathrm{GeV}^2$.
Distribution of $\mathrm{d}^3\sigma / \mathrm{d}p_{1,T} \mathrm{d}p_\mathrm{2,T} \mathrm{d}m$ as a function of $m$ for $\pi^+\pi^−$ pairs in several $(p_\mathrm{1,T}, p_\mathrm{2,T})$ bins, in units of $\mu\mathrm{b}/\mathrm{GeV}^3$.
Distribution of the squared momentum transfer of the virtual pion in several $(p_\mathrm{1,T}, p_\mathrm{2,T})$ bins, in units of $\mu\mathrm{b}/\mathrm{GeV}^3$.
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometer-scale space. These complex systems manifest a variety of shapes, traditionally explored using non-invasive spectroscopic techniques at low energies. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the ``collective flow assisted nuclear shape imaging'' method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analyzing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors. We benchmark this method in collisions of ground state Uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
Data from Figure 2, panel a, Au+Au, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c, systematics include non-flow difference in the two systems, but correlated non-flow systematics with the value of $\delta \left\langle v_{2}^{2}\right\rangle$ =+-3.2e-5 included
Data from Figure 2, panel a, U+U, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c, systematics include non-flow difference in the two systems, but correlated non-flow systematics with the value of $\delta \left\langle v_{2}^{2}\right\rangle$ =+-3.2e-5 included
Data from Figure 2, panel b, Au+Au, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c
A search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at $\sqrt{s}$ = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb$^{-1}$ collected in 2016-2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta ($p_\mathrm{T}^\gamma$$\gt$ 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass ($m_{\gamma\gamma}$$\gt$ 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters $\lvert\zeta_1\rvert$ $\lt$ 0.073 TeV$^{-4}$ and $\lvert\zeta_2\rvert$ $\lt$ 0.15 TeV$^{-4}$, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons $f^{-1}$ that varies from 0.03 TeV$^{-1}$ to 1 TeV$^{-1}$ over the mass range from 500 to 2000 GeV.
95% expected and observed one-dimensional limits on $\zeta_1$ and $\zeta_2$ anomalous LbyL production parameters, when the other parameter is set to zero. This corresponds to a search region of $m_{\gamma\gamma} > 350$ GeV, $0.070 < \xi^+ < 0.111$, and $0.070 < \xi^- < 0.138$.
Two-dimensional limits on anomalous quartic gauge coupling parameters. The parametric elliptic form is assumed: $\sigma=a_0\zeta_1^2+a_1\zeta_1\zeta_2+a_2\zeta_2^2$.
Limits on axion-like particle production.