Date

Global polarization of $\Xi$ and $\Omega$ hyperons in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.Lett. 126 (2021) 162301, 2021.
Inspire Record 1838481 DOI 10.17182/hepdata.100234

Global polarization of $\Xi$ and $\Omega$ hyperons has been measured for the first time in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The measurements of the $\Xi^-$ and $\bar{\Xi}^+$ hyperon polarization have been performed by two independent methods, via analysis of the angular distribution of the daughter particles in the parity violating weak decay $\Xi\rightarrow\Lambda+\pi$, as well as by measuring the polarization of the daughter $\Lambda$-hyperon, polarized via polarization transfer from its parent. The polarization, obtained by combining the results from the two methods and averaged over $\Xi^-$ and $\bar{\Xi}^+$, is measured to be $\langle P_\Xi \rangle = 0.47\pm0.10~({\rm stat.})\pm0.23~({\rm syst.})\,\%$ for the collision centrality 20%-80%. The $\langle P_\Xi \rangle$ is found to be slightly larger than the inclusive $\Lambda$ polarization and in reasonable agreement with a multi-phase transport model (AMPT). The $\langle P_\Xi \rangle$ is found to follow the centrality dependence of the vorticity predicted in the model, increasing toward more peripheral collisions. The global polarization of $\Omega$, $\langle P_\Omega \rangle = 1.11\pm0.87~({\rm stat.})\pm1.97~({\rm syst.})\,\%$ was obtained by measuring the polarization of daughter $\Lambda$ in the decay $\Omega \rightarrow \Lambda + K$, assuming the polarization transfer factor $C_{\Omega\Lambda}=1$.

4 data tables

$\Xi$ and $\Omega$ global polarization in Au+Au collisions at 200 GeV. Decay parameter from PDG2020, $\alpha_{\Xi}$=-$\alpha_{\bar{\Xi}}$=-0.401, is used.

The energy dependence of $\Lambda$ and $\bar{\Lambda}$ global polarization. Note that the results from previous measurements are rescaled using updated decay parameters (PDG2020), $\alpha_{\Lambda}$=0.732 and $\alpha_{\bar{\Lambda}}$=-0.758. The original data can be found in <a href="https://www.hepdata.net/record/ins1510474">this page</a>.

Centrality dependence of $\Xi$ global poalrization in Au+Au collisions at 200 GeV. Decay parameter from PDG2020, $\alpha_{\Xi}$=-$\alpha_{\bar{\Xi}}$=-0.401, is used.

More…

Flow and interferometry results from Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.C 103 (2021) 034908, 2021.
Inspire Record 1809043 DOI 10.17182/hepdata.95903

The Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC) was extended to energies below $\sqrt{\textit{s}_{NN}}$ = 7.7 GeV in 2015 by successful implementation of the fixed-target mode of operation in the STAR (Solenoidal Track At RHIC) experiment. In the fixed-target mode, ions circulate in one ring of the collider and interact with a stationary target at the entrance of the STAR Time Projection Chamber. The first results for Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV are presented, including directed and elliptic flow of identified hadrons, and radii from pion femtoscopy. The proton flow and pion femtoscopy results agree quantitatively with earlier measurements by Alternating Gradient Synchrotron experiments at similar energies. This validates running the STAR experiment in the fixed-target configuration. Pion directed and elliptic flow are presented for the first time at this beam energy. Pion and proton elliptic flow show behavior which hints at constituent quark scaling, but large error bars preclude reliable conclusions. The ongoing second phase of BES (BES-II) will provide fixed-target data sets with 100 times more events at each of several energies down to $\sqrt{\textit{s}_{NN}}$ = 3.0 GeV.

12 data tables

Centrality selection for STAR FXT sqrt(sNN) = 4.5 GeV Au+Au collisions

Rapidity dependence of directed flow, v1(y), for protons with transverse momentum 0.4 < pT < 2.0 GeV/c from events with 10-25% centrality.

Rapidity dependence of directed flow, v1(y), for negative pions with transverse momentum pT > 0.2 GeV/c and total momentum magnitude |p| < 1.6 GeV/c from events within 10-30% centrality. Here, the BBC-based Event Plane method is used. Plotted error bars are statistical only, and systematic errors are of comparable size.

More…

Beam-Energy Dependence of the Directed Flow of Deuterons in Au+Au Collisions

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.C 102 (2020) 044906, 2020.
Inspire Record 1806121 DOI 10.17182/hepdata.95544

We present a measurement of the first-order azimuthal anisotropy, $v_1(y)$, of deuterons from Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV recorded with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The energy dependence of the $v_1(y)$ slope, $dv_{1}/dy|_{y=0}$, for deuterons, where $y$ is the rapidity, is extracted for semi-central collisions (10-40\% centrality) and compared to that of protons. While the $v_1(y)$ slopes of protons are generally negative for $\sqrt{s_{NN}} >$ 10 GeV, those for deuterons are consistent with zero, a strong enhancement of the $v_1(y)$ slope of deuterons is seen at the lowest collision energy (the largest baryon density) at $\sqrt{s_{NN}} =$ 7.7 GeV. In addition, we report the transverse momentum dependence of $v_1$ for protons and deuterons. The experimental results are compared with transport and coalescence models.

6 data tables

The 1st-order event plane ($\Psi_{1}$) resolution as a function of centrality of Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The $\Psi_{1}$ is reconstructed with the BBC detectors and its resolution is estimated by the correlation of sub-$\Psi_{1}$ from east BBC and west BBC. Data presented later (10-40\% centrality) is indicated by the dashed-line box.

Rapidity dependene of $v_1$ for protons(open squares) in 10-40 \%Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The lines, dashed-dot line for proton and dashed line for deuteron, at the midrapidity ($|y| < 0.6$) are the fit with linear functions to extract the slopes. The plotted uncertainties are the statistical only

Rapidity dependene of $v_1$ for deuterons(solid circles) in 10-40 \%Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The lines, dashed-dot line for proton and dashed line for deuteron, at the midrapidity ($|y| < 0.6$) are the fit with linear functions to extract the slopes. The plotted uncertainties are the statistical only

More…

Investigation of the linear and mode-coupled flow harmonics in Au+Au collisions at sNN = 200 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Lett.B 809 (2020) 135728, 2020.
Inspire Record 1802752 DOI 10.17182/hepdata.95353

Flow harmonics ($\textit{v}_{n}$) of the Fourier expansion for the azimuthal distributions of hadrons are commonly employed to quantify the azimuthal anisotropy of particle production relative to the collision symmetry planes. While lower order Fourier coefficients ($\textit{v}_{2}$ and $\textit{v}_{3}$) are more directly related to the corresponding eccentricities of the initial state, the higher-order flow harmonics ($\textit{v}_{n>3}$) can be induced by a mode-coupled response to the lower-order anisotropies, in addition to a linear response to the same-order anisotropies. These higher-order flow harmonics and their linear and mode-coupled contributions can be used to more precisely constrain the initial conditions and the transport properties of the medium in theoretical models. The multiparticle azimuthal cumulant method is used to measure the linear and mode-coupled contributions in the higher-order anisotropic flow, the mode-coupled response coefficients, and the correlations of the event plane angles for charged particles as functions of centrality and transverse momentum in Au+Au collisions at nucleon-nucleon center-of-mass energy \roots = 200 GeV. The results are compared to similar LHC measurements as well as to several viscous hydrodynamic calculations with varying initial conditions.

5 data tables

3-particle integrated correlators

The integrated $v_{4}$ and $v_{5}$

The integrated $\chi_{4,22}$, $\rho_{4,22}$, $\chi_{5,23}$ and $\rho_{5,23}$

More…

Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.C 106 (2022) 034908, 2022.
Inspire Record 1800376 DOI 10.17182/hepdata.95210

Quark interactions with topological gluon configurations can induce local chirality imbalance and parity violation in quantum chromodynamics, which can lead to the chiral magnetic effect (CME) -- an electric charge separation along the strong magnetic field in relativistic heavy-ion collisions. The CME-sensitive azimuthal correlator observable ($\Delta\gamma$) is contaminated by background arising, in part, from resonance decays coupled with elliptic anisotropy ($v_{2}$). We report here differential measurements of the correlator as a function of the pair invariant mass ($m_{\rm inv}$) in 20-50% centrality Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV by the STAR experiment at RHIC. Strong resonance background contributions to $\Delta\gamma$ are observed. At large $m_{\rm inv}$ where this background is significantly reduced, the $\Delta\gamma$ value is found to be significantly smaller. An event-shape-engineering technique is deployed to determine the $v_{2}$ background shape as a function of $m_{\rm inv}$. We extract a $v_2$-independent and $m_{\rm inv}$-averaged signal $\Delta\gamma_{\rm sig}$ = (0.03 $\pm$ 0.06 $\pm$ 0.08) $\times10^{-4}$, or $(2\pm4\pm5)\%$ of the inclusive $\Delta\gamma(m_{\rm inv}>0.4$ GeV/$c^2$)$ =(1.58 \pm 0.02 \pm 0.02) \times10^{-4}$, within pion $p_{T}$ = 0.2 - 0.8~\gevc and averaged over pseudorapidity ranges of $-1 < \eta < -0.05$ and $0.05 < \eta < 1$. This represents an upper limit of $0.23\times10^{-4}$, or $15\%$ of the inclusive result, at $95\%$ confidence level for the $m_{\rm inv}$-integrated CME contribution.

9 data tables

The $m_{\rm inv}$ dependences of the OS and SS pion pair multiplicities in 20-50$\%$ Au+Au collisions at 200 GeV.

The $m_{\rm inv}$ dependences of the $\gamma_{OS}$, $\gamma_{SS}$ in 20-50$\%$ Au+Au collisions at 200 GeV.

$m_{\rm inv}$ dependences of the relative excess of OS over SS pion pairs in 20-50$\%$ Au+Au collisions at 200 GeV.

More…

Measurement of the $e^+e^- \to\pi^+\pi^- $ process cross section with the SND detector at the VEPP-2000 collider in the energy region $0.525<\sqrt{s}<0.883$ GeV

The SND collaboration Achasov, M.N. ; Baykov, A.A. ; Barnyakov, A.Yu. ; et al.
JHEP 01 (2021) 113, 2021.
Inspire Record 1789269 DOI 10.17182/hepdata.114983

The cross section of the process $e^+ e^-\to\pi^+\pi^-$ has been measured in the Spherical Neutral Detector (SND) experiment at the VEPP-2000 $e^+e^-$ collider VEPP-2000 in the energy region $525 <\sqrt[]{s} <883$ MeV. The measurement is based on data with an integrated luminosity of about 4.6 pb$^{-1}$. The systematic uncertainty of the cross section determination is 0.8 % at $\sqrt{s}>0.600$ GeV. The $\rho$ meson parameters are obtained as $m_\rho = 775.3\pm 0.5\pm 0.6$ MeV, $\Gamma_\rho = 145.6\pm 0.6\pm 0.8$ MeV, $B_{\rho\to e^+ e^-}\times B_{\rho\to\pi^+\pi^-} = (4.89\pm 0.02\pm 0.04)\times 10^{-5}$, and the parameters of the $e^+ e^-\to\omega\to\pi^+\pi^-$ process, suppressed by $G$-parity, as $B_{\omega\to e^+ e^-}\times B_{\omega\to\pi^+\pi^-}= (1.32\pm 0.06\pm 0.02)\times 10^{-6} $ and $\phi_{\rho\omega} = 110.7\pm 1.5\pm1.0$ degrees.

3 data tables

The Born cross section of the process e+e- -> pi+pi- taking into account the radiative corrections due to the initial and final state radiation.

Measured value of the pion form factor

The bare e+e- -> pi+pi- undressed cross without vacuum polarization, but with the final state radiative correction.


Measurement of single-diffractive dijet production in proton-proton collisions at $\sqrt{s} =$ 8 TeV with the CMS and TOTEM experiments

The CMS & TOTEM collaborations Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 1164, 2020.
Inspire Record 1782637 DOI 10.17182/hepdata.94257

Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss $\xi$ and the four-momentum transfer squared $t$. Both processes pp$\to$pX and pp$\to$Xp, ie with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton-proton collisions at $\sqrt{s}$= 8 TeV during a dedicated run with $\beta^{\ast} =$ 90 m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5 nb$^{-1}$. The single-diffractive dijet cross section $\sigma^\mathrm{pX}_{\mathrm{jj}}$, in the kinematic region $\xi \lt$ 0.1, 0.03 $\lt |$t$| \lt 1$ GeV$^2$, with at least two jets with transverse momentum $p_\mathrm{T} >$ 40 GeV, and pseudorapidity $|\eta| \lt$ 4.4, is 21.7$\pm$0.9 (stat)$^{+3.0}_{-3.3}$ (syst) $\pm$ 0.9 (lum) nb. The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of $\xi$, is presented as a function of $x$, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for $x$ values in the range $-$2.9 $\leq \log_{10} x \leq$$-$1.6, is $R = (\sigma^\mathrm{pX}_{\mathrm{jj}}/\Delta\xi)/\sigma_{\mathrm{jj}} =$ 0.025$\pm$0.001 (stat) $\pm$ 0.003 (syst), where $\sigma^\mathrm{pX}_{\mathrm{jj}}$ and $\sigma_{\mathrm{jj}}$ are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons.

3 data tables

Differential cross section as a function of $t$ for single-diffractive dijet production, in the kinematic region $\xi < 0.1$, $0.03 < \lvert t \rvert < 1\,\mathrm{GeV}^2$, with at least two jets with transverse momentum $p_{\mathrm{T}} > 40\,\mathrm{GeV}$, and pseudorapidity $\lvert \eta \rvert < 4.4$.

Differential cross section as a function of $\xi$ for single-diffractive dijet production, in the kinematic region $\xi < 0.1$, $0.03 < \lvert t \rvert < 1\,\mathrm{GeV}^2$, with at least two jets with transverse momentum $p_{\mathrm{T}} > 40\,\mathrm{GeV}$, and pseudorapidity $\lvert \eta \rvert < 4.4$.

Ratio per unit of $\xi$ of the single-diffractive and inclusive dijet cross sections in the region given by $\xi < 0.1$ and $0.03 < \lvert t \rvert < 1\,\mathrm{GeV}^2$, with at least two jets with transverse momentum $p_{\mathrm{T}} > 40\,\mathrm{GeV}$, and pseudorapidity $\lvert \eta \rvert < 4.4$.


Net-proton number fluctuations and the Quantum Chromodynamics critical point

The STAR collaboration Adam, J. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 126 (2021) 092301, 2021.
Inspire Record 1850675 DOI 10.17182/hepdata.101068

Non-monotonic variation with collision energy ($\sqrt{s_{\rm NN}}$) of the moments of the net-baryon number distribution in heavy-ion collisions, related to the correlation length and the susceptibilities of the system, is suggested as a signature for the Quantum Chromodynamics (QCD) critical point. We report the first evidence of a non-monotonic variation in kurtosis times variance of the net-proton number (proxy for net-baryon number) distribution as a function of \rootsnn with 3.1$\sigma$ significance, for head-on (central) gold-on-gold (Au+Au) collisions measured using the STAR detector at RHIC. Data in non-central Au+Au collisions and models of heavy-ion collisions without a critical point show a monotonic variation as a function of $\sqrt{s_{\rm NN}}$.

10 data tables

Event-by-event net-proton multiplicity distributions for central (0-5$\%$) Au+Au collisions from $\sqrt{s_{NN}} = 7.7 - 200 GeV. The distributions are normalised to total number of events. The distributions are not corrected for proton and antiproton detection efficiency.

Cumulants of net-proton distributions in Au+Au collisions for nine energies from $\sqrt{s_{NN}} = 7.7 - 200 GeV for 0-5$\%$ and 70-80$\%$ centrality.

Cumulant ratios C3/C2 and C4/C2 of net-proton distributions in Au+Au collisions for eight energies from $\sqrt{s_{NN}} = 7.7 - 62.4 GeV for 0-5$\%$ centrality. Also given are the derivative of the polynomial fits to the C3/C2 and C4/C2 vs energy at each energy and the Skellam baselines for the ratios.

More…

Measurement of $\Lambda$(1520) production in pp collisions at $\sqrt{s}$ = 7 TeV and p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adhya, S.P. ; et al.
Eur.Phys.J.C 80 (2020) 160, 2020.
Inspire Record 1752831 DOI 10.17182/hepdata.115139

The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.

12 data tables

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in inelastic pp collisions at $\sqrt{s}$ $\mathrm{=}$ 7 TeV.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in NSD p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV in multiplicity interval 0--20\%. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

More…

Charge-dependent pair correlations relative to a third particle in $p$+Au and $d$+Au collisions at RHIC

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Lett.B 798 (2019) 134975, 2019.
Inspire Record 1738942 DOI 10.17182/hepdata.105911

Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions -- the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in $p$+Au and $d$+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data.

10 data tables

The $\gamma_{OS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

The $\gamma_{SS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

The $\gamma_{OS}$ correlators in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

More…