The TOTEM experiment at the LHC has performed the first measurement at $\sqrt{s} = 13$ TeV of the $\rho$ parameter, the real to imaginary ratio of the nuclear elastic scattering amplitude at $t=0$, obtaining the following results: $\rho = 0.09 \pm 0.01$ and $\rho = 0.10 \pm 0.01$, depending on different physics assumptions and mathematical modelling. The unprecedented precision of the $\rho$ measurement, combined with the TOTEM total cross-section measurements in an energy range larger than 10 TeV (from 2.76 to 13 TeV), has implied the exclusion of all the models classified and published by COMPETE. The $\rho$ results obtained by TOTEM are compatible with the predictions, from alternative theoretical models both in the Regge-like framework and in the QCD framework, of a colourless 3-gluon bound state exchange in the $t$-channel of the proton-proton elastic scattering. On the contrary, if shown that the 3-gluon bound state $t$-channel exchange is not of importance for the description of elastic scattering, the $\rho$ value determined by TOTEM would represent a first evidence of a slowing down of the total cross-section growth at higher energies. The very low-$|t|$ reach allowed also to determine the absolute normalisation using the Coulomb amplitude for the first time at the LHC and obtain a new total proton-proton cross-section measurement $\sigma_{tot} = 110.3 \pm 3.5$ mb, completely independent from the previous TOTEM determination. Combining the two TOTEM results yields $\sigma_{tot} = 110.5 \pm 2.4$ mb.
Differential cross-section.
A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{\rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are presented as a function of $P_{\rm{hT}}^{2}$ in three-dimensional bins of $x$, $Q^2$, $z$ and compared to previous semi-inclusive measurements. We explore the small-$P_{\rm{hT}}^{2}$ region, i.e. $P_{\rm{hT}}^{2} < 1$ (GeV/$c$)$^2$, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger $P_{\rm{hT}}^{2}$, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small $P_{\rm{hT}}^{2}$ to study the dependence of the average transverse momentum $\langle P_{\rm{hT}}^{2}\rangle$ on $x$, $Q^2$ and $z$. The power-law behaviour of the multiplicities at large $P_{\rm{hT}}^{2}$ is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.
Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{\rm GeV}$ beam energy and the results are shown for the kinematic range $1~({\rm GeV}/c)^2 < Q^2 < 100~({\rm GeV}/c)^2$ in photon virtuality, $0.004<x<0.7$ in the Bjorken scaling variable and $W > 4~{\rm GeV}/c^2$ in the mass of the hadronic final state. The deuteron double-spin asymmetry $A_1^{\rm d}$ and the deuteron longitudinal-spin structure function $g_1^{\rm d}$ are presented in bins of $x$ and $Q^2$. Towards lowest accessible values of $x$, $g_1^{\rm d}$ decreases and becomes consistent with zero within uncertainties. The presented final $g_1^{\rm d}$ values together with the recently published final $g_1^{\rm p}$ values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the $g_1$ world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge $a_0$, {which is identified in the $\overline{\rm MS}$ renormalisation scheme with the total contribution of quark helicities to the nucleon spin}, is extracted from only the COMPASS deuteron data with negligible extrapolation uncertainty: $a_0 (Q^2 = 3~({\rm GeV}/c)^2) = 0.32 \pm 0.02_{\rm stat} \pm0.04_{\rm syst} \pm 0.05_{\rm evol}$. Together with the recent results on the proton spin structure function $g_1^{\rm p}$, the results on $g_1^{\rm d}$ constitute the COMPASS legacy on the measurements of $g_1$ through inclusive spin-dependent deep inelastic scattering.
Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in $x$ bins averaged over $Q^2$.
Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in (x, $Q^2$) bins.
Values of $g_1^{NS}$ for the COMPASS data in $x$ bins averaged over $Q^2$.
Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6 LiD target. They cover the kinematic domain 1 (GeV/c)2 < Q2 < 60 (GeV/c)^2 in the photon virtuality, 0.004 < x < 0.4, 0.1 < y < 0.7, 0.20 < z < 0.85, and W > 5 GeV/c^2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.
Multiplicities of positively charged kaons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{K^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the kaon count, $DVM^{K^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the kaon count, $\eta^{K^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{K^{+}}$, as follows: $M^{K^{+}}$ = $M_{raw}^{K^{+}}$ * $\frac{\eta^{K^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{K^{+}} } {DVM^{DIS} }$.
Multiplicities of negatively charged kaons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{K^{-}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the kaon count, $DVM^{K^{-}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the kaon count, $\eta^{K^{-}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{K^{-}}$, as follows: $M^{K^{-}}$ = $M_{raw}^{K^{-}}$ * $\frac{\eta^{K^{-}}} {\eta^{DIS}}$ * $\frac{ DVM^{K^{-}} } {DVM^{DIS} }$.
Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the relative hadron energy $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target ($^6$LiD). They cover the kinematic domain in the photon virtuality $Q^2$ > 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.
Multiplicities of positively charged pions from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{\pi^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the pion count, $DVM^{\pi^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the pion count, $\eta^{\pi^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{\pi^{+}}$, as follows: $M^{\pi^{+}}$ = $M_{raw}^{\pi^{+}}$ * $\frac{\eta^{\pi^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{\pi^{+}} } {DVM^{DIS} }$.
Multiplicities of negatively charged pions from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{\pi^{-}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the pion count, $DVM^{\pi^{-}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the pion count, $\eta^{\pi^{-}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{\pi^{-}}$, as follows: $M^{\pi^{-}}$ = $M_{raw}^{\pi^{-}}$ * $\frac{\eta^{\pi^{-}}} {\eta^{DIS}}$ * $\frac{ DVM^{\pi^{-}} } {DVM^{DIS} }$.
Multiplicities of unidentified positively charged hadrons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{h^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the hadron count, $DVM^{h^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the hadron count, $\eta^{h^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{h^{+}}$, as follows: $M^{h^{+}}$ = $M_{raw}^{h^{+}}$ * $\frac{\eta^{h^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{h^{+}} } {DVM^{DIS} }$.
The results of a measurement of recoil proton polarization for π−p → π−p at 300 MeV are given, and a phase shift analysis is made with the help of other data.
No description provided.
Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.
Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.
None
THE ASYMMETRY SIGMA HAS BEEN DETERMINED BY THE FORMULA: D(SIG)/D(OMEGA)=D(SIG0)/D(OMEGA)*(1+P*SIGMA*COS(PHI)), WHERE D(SIG0)/D(OMEGA) - CROSS SECTION ON U NPOLARIZED PHOTON BEAM, P - BEAM POLARIZATION, PHI - ASIMUTHAL ANGLE BETWEEN POLARIZATION VECTOR OF BEAM AND THE PLANE OF THE REACTION.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.