The measurement of the production of charm jets, identified by the presence of a ${\rm D^0}$ meson in the jet constituents, is presented in proton-proton collisions at centre-of-mass energies of $\sqrt{s}$ = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The ${\rm D^0}$ mesons were reconstructed from their hadronic decay ${\rm D^0} \rightarrow {\rm K^-}\pi^+$ and the respective charge conjugate. Jets were reconstructed from ${\rm D^0}$-meson candidates and charged particles using the anti-$k_{\rm T}$ algorithm, in the jet transverse momentum range $5
$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=13$ TeV.
$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=5.02$ TeV.
Ratio of $p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons in pp collisions at $\sqrt{s}=13$ TeV to $\sqrt{s}=5.02$ TeV for $R=0.2$, $0.4$, and $0.6$.
Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large transverse momentum for this result, p<4 GeV/c and 0.8
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
(C=GLUON) and (C=QUARK) stand for jets originated from gluon and any light quark (Q=u, d, s), correspondingly. The ratio of gluon to quark jets are evaluated for 40.1 GeV jet energy.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
In this paper, results are presented from a study of the hadronic final states in e+e− annihilation at 29 GeV. The data were obtained with the High Resolution Spectrometer (HRS) at the SLAC PEP e+e− colliding-beam facility. The results are based on 6342 selected events corresponding to an integrated luminosity of 19.6 pb−1. The distributions of the events in sphericity (S), thrust (T), and aplanarity (A) are given and compared to other e+e− data in the same energy range. We measure 〈S〉=0.130±0.003±0.010 and 〈1-T〉=0.100±0.002. The sphericity distribution is compared to sphericity measurements made for beam jets in hadronic collisions as well as jets studied in neutrino scattering. The data sample is further reduced to 4371 events with the two-jet selections, S≤0.25 and A≤0.1. The single-particle distributions in the longitudinal and transverse directions are given. For low values of the momentum fraction (z=2p/W), the invariant distribution shows a maximum at z∼0.06, consistent with a QCD expectation. The data at high Feynman x (xF) show distribution consistent with being dominated by a (1-xf)2 variation for the leading quark-meson transition. The rapidity distribution shows a shallow central minimum with a height (1/NevdNh/dY‖Y=0=2.3±0.02±0.07. The mean charged multiplicity is measured to be 〈nch〉=13.1±0.05±0.6. The mean transverse momentum relative to the thrust axis 〈pT〉 rises as a function of z to a value of 0.70±0.02 GeV/c for z≳0.3. The distributions are compared to those measured in other reactions.
New values supplied 6.7.87 by M.Derrick.
No description provided.
New values supplied 6.7.87 by M. Derrick.
The electroweak production asymmetry and the decay fragmentation function for e + e − → c c have been measured at s = 29 GeV using charged D ∗ production over the full kinematic range. The data were taken at PEP using the High Resolution Spectrometer. The measured asymmetry is −0.12 ± 0.08. The total production cross section in units of the point cross section corrected for initial state radiation is R D ∗ = 2.7 ± 0.9 .
ASSUMES SIG(D*+) = SIG(D*0). (EXPT. MEASURES D*+ PRODUCTION ONLY). R VALUE CORRECTED FOR INITIAL STATE RADIATION.
No description provided.
We have observed inclusive production of D0 and D+ mesons, and their charge conjugates, in e+e− annihilation at 29 GeV on the basis of a data sample of 106 pb−1. These signals correspond to R values of R(D0+D―0)=1.8±0.5 and R(D++D−)=1.2±0.4. Taking the D+ and D0 data together, we measure a charge asymmetry of A=−0.08±0.12 for charmed quarks. A comparison of R(D+D―) with R(D*+D―*) obtained via the process D*+→D0π+ gives a DD* ratio of 1.0−0.2+0.3, indicating that direct D* production dominates over direct D production.
No description provided.
EXTRAPOLATED TO ALL Z.
No description provided.
We present inclusive spectra of charged hadrons produced in\(\begin{array}{*{20}c}{( - )}\\v\\ \end{array}\)-Freon interactions at average beam energies of about 6 GeV. The experiment was done using the bubble chamber SKAT at the 70 GeV Serpukhov accelerator. In the hadronic energy range,W<5 GeV, dominantly isotropic events are found. The transverse momentum of the produced particles shows no strongW2-dependence. Feynman-scaling may be reached forW2≳10 GeV2, where also theż-spectra are described by the predictions of the parton model. All experimental data are reproduced rather well also by a Monte Carlo model based on ordinary phase space.
No description provided.
No description provided.
No description provided.
None
D* FRAGMENTATION FUNCTION.
R VALUE IS RADIATIVELY CORRECTED (BUT NOT CROSS SECTION).